稱滿足以下兩個條件的有窮數(shù)列為階“期待數(shù)列”:
①;②.
(1)若數(shù)列的通項公式是,
試判斷數(shù)列是否為2014階“期待數(shù)列”,并說明理由;
(2)若等比數(shù)列為階“期待數(shù)列”,求公比q及的通項公式;
(3)若一個等差數(shù)列既是階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項公式;
(1)是;
(2).或;
(3);
【解析】
試題分析:(1)判斷數(shù)列是不是為2014階“期待數(shù)列”,就是根據(jù)定義計算,,是不是一個為0,一個為1,如是則是“期待數(shù)列”,否則就不是;(2)數(shù)列中等比數(shù)列,因此是其前和,故利用前前項和公式,分和進行討論,可很快求出,或;(3)階等差數(shù)列是遞增數(shù)列,即公差,其和為0,故易知數(shù)列前面的項為負,后面的項為正,即前項為正,后項為正,因此有,,這兩式用基本量或直接相減可求得,,因此通項公式可得.
試題解析:(1)因為, 2分
所以
,
所以數(shù)列為2014階“期待數(shù)列” 4分
(2)①若,由①得,,得,矛盾. 5分
若,則由①=0,得, 7分
由②得或.
所以,.?dāng)?shù)列的通項公式是
或 9分
(3)設(shè)等差數(shù)列的公差為,>0.
∵,∴,∴,
∵>0,由得,, 11分
由①、②得,, 13分
兩式相減得,, ∴,
又,得,
∴數(shù)列的通項公式是. 16分
考點:(1)三角函數(shù)的誘導(dǎo)公式與新定義的理解;(2)等比數(shù)列的前和公式與通項公式;(3)等差數(shù)列的前和公式與通項公式.
科目:高中數(shù)學(xué) 來源: 題型:
y |
x |
x |
y |
x |
x |
x |
1 |
2 |
x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2x-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2014 |
(2n-1)π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年上海市徐匯區(qū)高三上學(xué)期期末考試(一模)理科數(shù)學(xué)試卷(解析版) 題型:解答題
稱滿足以下兩個條件的有窮數(shù)列為階“期待數(shù)列”:
①;②.
(1)若等比數(shù)列為階“期待數(shù)列”,求公比q及的通項公式;
(2)若一個等差數(shù)列既是階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項公式;
(3)記n階“期待數(shù)列”的前k項和為:
(i)求證:;
(ii)若存在使,試問數(shù)列能否為n階“期待數(shù)列”?若能,求出所有這樣的數(shù)列;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com