【題目】已知橢圓過點,且離心率

(1)求橢圓的標準方程

(2)是否存在過點的直線交橢圓與不同的兩點,且滿足 (其中為坐標原點)。若存在,求出直線的方程;若不存在,請說明理由。

【答案】(1);(2)存在直線滿足題意.

【解析】

(1)根據(jù)已知得到關于a,b,c的方程組,解方程組即得解.(2)對直線l的斜率分類討論,直線的斜率必存在,不妨設為,設直線的方程為,即,聯(lián)立直線和橢圓的方程得到,得到,把韋達定理代入向量的數(shù)量積,得到k的值.即得直線的方程.

(1)∵橢圓過點,且離心率

,解得,

∴橢圓的方程為

(2)假設存在過點的直線交橢圓于不同的兩點,且滿足

若直線的斜率不存在,且直線過點,則直線即為軸所在直線

∴直線與橢圓的兩不同交點就是橢圓短軸的端點,

∴直線的斜率必存在,不妨設為,

∴可設直線的方程為,即

聯(lián)立,消,

∵直線與橢圓相交于不同的兩點,

得:

,

,

化簡得,

,經檢驗均滿足①式,

∴直線的方程為: ,

∴存在直線滿足題意.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在下列命題中,下列選項正確的是( )

A. 在回歸直線中,變量時,變量的值一定是15.

B. 兩個變量相關性越強,則相關系數(shù)就越接近于1.

C. 在殘差圖中,殘差點比較均勻落在水平的帶狀區(qū)域中即可說明選用的模型比較合適,與帶狀區(qū)域的寬度無關.

D. 是兩個相等的非零實數(shù),則是純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=x2﹣bx+alnx.
(1)若b=2,函數(shù)f(x)有兩個極值點x1 , x2 , 且x1<x2 , 求實數(shù)a的取值范圍;
(2)在(1)的條件下,證明:f(x2)>﹣
(3)若對任意b∈[1,2],都存在x∈(1,e)(e為自然對數(shù)的底數(shù)),使得f(x)<0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù) 的圖象向左平移 個周期后,所得圖象對應的函數(shù)g(x)的一個單調增區(qū)間為(
A.[0,π]
B.
C.
D.[﹣π,0]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點M(﹣3,0),點P在y軸上,點Q在x軸的正半軸上,點N在直線PQ上,且滿足 . (Ⅰ)當點P在y軸上移動時,求點N的軌跡C的方程;
(Ⅱ)過點 做直線l與軌跡C交于A,B兩點,若在x軸上存在一點E(x0 , 0),使得△AEB是以點E為直角頂點的直角三角形,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù) 的圖象向左平移 個單位長度后,所得函數(shù)g(x)的圖象關于原點對稱,則函數(shù)f(x)在 的最大值為(
A.0
B.
C.
D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某算法的程序框圖如圖所示,其中輸入的變量x在1,2,3,…,24這24個整數(shù)中等可能隨機產生 (I)分別求出按程序框圖正確編程運行時輸出y的值為i的概率pi(i=1,2,3);
(II)甲乙兩同學依據(jù)自己對程序框圖的理解,各自編程寫出程序重復運行n次后,統(tǒng)計記錄輸出y的值為i(i=1,2,3)的頻數(shù),以下是甲乙所作頻數(shù)統(tǒng)計表的部分數(shù)據(jù).
甲的頻數(shù)統(tǒng)計圖(部分)

運行次數(shù)n

輸出y的值為1的頻數(shù)

輸出y的值為2的頻數(shù)

輸出y的值為3的頻數(shù)

30

14

6

10

2100

1027

376

697

乙的頻數(shù)統(tǒng)計圖(部分)

運行次數(shù)n

輸出y的值為1的頻數(shù)

輸出y的值為2的頻數(shù)

輸出y的值為3的頻數(shù)

30

12

11

7

2100

1051

696

353

當n=2100時,根據(jù)表中的數(shù)據(jù),分別寫出甲、乙所編程序各自輸出y的值為i(i=1,2,3)的頻率(用分數(shù)表示),并判斷兩位同學中哪一位所編程序符合要求的可能系較大;
(III)將按程序擺圖正確編寫的程序運行3次,求輸出y的值為2的次數(shù)ξ的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給定命題p:“若a2017>﹣1,則a>﹣1”;命題q:“x∈R,x2tanx2>0”,則下列命題中,真命題的是(
A.p∨q
B.(¬p)∨q
C.(¬p)∧q
D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 滿足 ,且a1=3. (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求證:

查看答案和解析>>

同步練習冊答案