精英家教網 > 高中數學 > 題目詳情

設函數f(x)=x3x2+6xa.
(1)對于任意實數x,f′(x)≥m恒成立,求m的最大值;
(2)若方程f(x)=0有且僅有一個實根,求a的取值范圍.

(1)-(2)(-∞,2)∪

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設a為實數,函數f(x)=ex-2x+2a,x∈R.
(1)求f(x)的單調區(qū)間及極值;
(2)求證:當a>ln2-1且x >0時,ex>x2-2ax+1

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數f(x)=ln xx2-(a+1)x(a>0,a為常數).
(1)討論f(x)的單調性;
(2)若a=1,證明:當x>1時,f(x)< x2.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的導函數.
(1)若x∈[-2,-1],不等式f(x)≤f′(x)恒成立,求a的取值范圍;
(2)解關于x的方程f(x)=|f′(x)|; ?
(3)設函數g(x)=,求g(x)在x∈[2,4]時的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,.
(1)若,設函數,求的極大值;
(2)設函數,討論的單調性.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,為常數),直線與函數、的圖象都相切,且與函數圖象的切點的橫坐標為
(1)求直線的方程及的值;
(2)若 [注:的導函數],求函數的單調遞增區(qū)間;
(3)當時,試討論方程的解的個數.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知x=3是函數f(x)=aln(1+x)+x2-10x的一個極值點.
(1)求a;
(2)求函數f(x)的單調區(qū)間;
(3)若直線yb與函數yf(x)的圖象有3個交點,求b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知向量m=(ex,ln xk),n=(1,f(x)],mn(k為常數),曲線yf(x)在點(1,f(1))處的切線與y軸垂直,F(x)=xexf′(x).
(1)求k的值及F(x)的單調區(qū)間;
(2)已知函數g(x)=-x2+2ax(a為正實數),若對于任意x2∈[0,1],總存在x1∈(0,+∞),使得g(x2)<F(x1),求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數
(Ⅰ)若在x=處的切線與直線4x+y=0平行,求a的值;
(Ⅱ)討論函數的單調區(qū)間;
(Ⅲ)若函數的圖象與x軸交于A,B兩點,線段AB中點的橫坐標為,證明

查看答案和解析>>

同步練習冊答案