3.已知數(shù)列{an}的首項(xiàng)為a1=$\frac{1}{2}$,且$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{1}{2}$(n∈N*).
(1)求{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=$\frac{1}{{a}_{n}}$,求數(shù)列{bn}的前5項(xiàng)和S5

分析 (1)數(shù)列{an}的首項(xiàng)為a1=$\frac{1}{2}$,且$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{1}{2}$(n∈N*),數(shù)列{an}以a1=$\frac{1}{2}$為首項(xiàng),以$\frac{1}{2}$為公比的等比數(shù)列,寫(xiě)出通項(xiàng)公式,
(2)將an代入,寫(xiě)出bn的通項(xiàng)公式,即可寫(xiě)出前5項(xiàng)和S5

解答 解:(1)數(shù)列{an}的首項(xiàng)為a1=$\frac{1}{2}$,$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{1}{2}$,
∴數(shù)列{an}以a1=$\frac{1}{2}$為首項(xiàng),以$\frac{1}{2}$為公比的等比數(shù)列,
∴an=$(\frac{1}{2})^{n}$,
(2)若數(shù)列{bn}滿足bn=$\frac{1}{{a}_{n}}$=2n,
數(shù)列{bn}的前5項(xiàng)和S5,S5=12+22+32+42+52=55.
∴S5=55.

點(diǎn)評(píng) 本題考查求等比數(shù)列的通項(xiàng)公式和求數(shù)列的前n項(xiàng)和,過(guò)程簡(jiǎn)單明了,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.f(x)=ax3+bsinx+3,f(lg3)=5,則f(lg$\frac{1}{3}$)=( 。
A.-1B.1C.-5D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)實(shí)數(shù)a,b,c滿足a2+b2≤c≤1,則a+$\sqrt{3}$b+$\frac{1}{2}$c的最小值是-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知cosα=-$\frac{3}{5}$,α∈($\frac{π}{2},π})$),sinβ=-$\frac{12}{13}$,β是第三象限角,求sin(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.下列各式中,值最小的是(  )
A.sin50°cos37°-sin40°cos53°B.2sin6°cos6°
C.2cos240°-1D.$\frac{{\sqrt{3}}}{2}sin{41°}-\frac{1}{2}cos{41°}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.要得到函數(shù)y=2cosx•sin(x+$\frac{π}{6}$)-$\frac{1}{2}$的圖象,只需將y=sinx的圖象( 。
A.先向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度,再將所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的$\frac{1}{2}$倍(縱坐標(biāo)不變)
B.先向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度,再將所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的2倍(縱坐標(biāo)不變)
C.先將所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的2倍(縱坐標(biāo)不變),再向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度
D.先將所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的$\frac{1}{2}$倍(縱坐標(biāo)不變),再向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.直線l的方程為x+y+1=0,則直線l的傾斜角為135°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.不等式|3x+1|>2+5x的解為( 。
A.x<-$\frac{3}{8}$B.x<-$\frac{1}{2}$C.x≤-$\frac{1}{2}$D.x≤-$\frac{3}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.試應(yīng)用二倍角的正弦、余弦公式化簡(jiǎn)并討論函數(shù)y=2cos2(x-$\frac{π}{4}$)-1的奇偶性與周期性.

查看答案和解析>>

同步練習(xí)冊(cè)答案