14.設(shè)A=$[\begin{array}{l}{3}&{7}&{-3}\\{-2}&{-5}&{2}\\{-4}&{-10}&{3}\end{array}]$,求AA*

分析 先求出|A|,再利用公式AA*=|A|E得出.

解答 解:|A|=3×(-5)×3-7×2×4-3×2×10+4×5×3+2×7×3+3×10×2=1,
∴AA*=E=$(\begin{array}{l}{1}&{0}&{0}\\{0}&{1}&{0}\\{0}&{0}&{1}\end{array})$.

點(diǎn)評 本題考查了矩陣的變換和矩陣乘法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知b≤2,設(shè)命題p:函數(shù)f(x)=$\frac{bx+|a|}{x+1}$在(0,+∞)上是增函數(shù):命題q:對?x>0,x2-(b-|a|+1)x+1≥0恒成立.若滿足p∧q為真命題的實(shí)數(shù)對為(a,b),求以實(shí)數(shù)對(a,b)為坐標(biāo)的點(diǎn)所表示的平面區(qū)域的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.二次函數(shù)y=3x2+2(m-1)x+n在區(qū)間(-∞,1)上是減函數(shù),在區(qū)間[1,+∞)上是增函數(shù),則實(shí)數(shù)m=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.(1)函數(shù)y=sin(2x-$\frac{π}{6}$)圖象的條對稱軸是方程x=$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z,對稱中心坐標(biāo)($\frac{kπ}{2}$+$\frac{π}{12}$,0),k∈Z,最大值x時(shí)集合:{x|x=kπ+$\frac{π}{3}$,k∈Z}.
(2)函數(shù)y=sin(2x-$\frac{π}{6}$)-1圖象的條對稱軸是方程x=$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z,對稱中心坐標(biāo)($\frac{kπ}{2}$+$\frac{π}{12}$,0),k∈Z,最大值x時(shí)集合:{x|x=kπ+$\frac{π}{3}$,k∈Z}.
(3)函數(shù)y=tan(2x-$\frac{π}{6}$)+3圖象對稱中心坐標(biāo)( $\frac{kπ}{4}$+$\frac{π}{12}$,0),k∈Z,單調(diào)遞增區(qū)間為[kπ-$\frac{π}{6}$,$\frac{kπ}{2}$+$\frac{π}{3}$],k∈Z.
(4)函數(shù)y=|tan(2x-$\frac{π}{6}$)|+3圖象的條對稱軸是方程x=$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z,周期是π,單調(diào)遞減區(qū)間為[kπ-$\frac{π}{6}$,$\frac{kπ}{2}$+$\frac{π}{12}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某城市一年中12個(gè)月的平均氣溫與月份數(shù)之間的關(guān)系可近似地用三角函數(shù)來描述,已知6月份的月平均氣溫最高,為29.45℃,12月份的月平均氣溫最低,為18.3℃,求出這個(gè)三角函數(shù)的表達(dá)式,并畫出該函數(shù)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.將x1,x2,…,xn中的最小數(shù)記為min{x1,x2…,xn},最大數(shù)記為max{x1,x2…,xn},則max{min{x2-4x+4,2x-1,-x+8}}(x∈R)的值為( 。
A.1B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知全集U={1,2,3,4},集合A={1,2},B={2},則∁U(A∪B)=( 。
A.{1,3,4}B.{3,4}C.{3}D.{4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.指出當(dāng)角x取何值時(shí)下列函數(shù)取得最大值和最小值.
(1)y=sin(3x-$\frac{π}{4}$);
(2)y=sin2x-cos2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在直角坐標(biāo)系中,有一條長度為2的線段AB,點(diǎn)A在y軸上運(yùn)動(dòng),點(diǎn)B在x軸上運(yùn)動(dòng),且保持線段長度不變,線段AB上的點(diǎn)P分線段AB所成的比為1:2,求點(diǎn)P滿足的方程.

查看答案和解析>>

同步練習(xí)冊答案