如圖,在等腰梯形ABCD中,CD=2,AB=4,AD=BC=,E、F分別為CD、AB中點(diǎn),沿EF將梯形AFED折起,使得∠AFB=60°,點(diǎn)G為FB的中點(diǎn).
(1)求證:AG⊥平面BCEF
(2)求DG的長(zhǎng)度.

解:(1)∵AF=BF且∠AFB=60°,
∴△ABF是等邊三角形
又∵G是FB的中點(diǎn),
∴AG⊥BF
∵翻折前的等腰梯形ABCD中,E、F分別是CD、AB的中點(diǎn),
∴EF⊥AB,可得翻折后EF⊥AF,EF⊥BF
∵AF、BF是平面ABF內(nèi)的相交直線,
∴EF⊥平面ABF
∵AG平面ABF,
∴AG⊥EF,
∵BF、EF是平面BCEF內(nèi)的相交直線,
∴AG⊥平面BCEF
(2)取EC中點(diǎn)M,連接MC、MD、MG
∵AF∥DE,AF平面ABF,DE平面ABF,
∴DE∥平面ABF,
同理可得:CE∥平面ABF,
∵DE、CE是平面DCE內(nèi)的相交直線,
∴平面DCE∥平面ABF,可得AG∥DM
∵AG⊥平面BCEF,∴DM⊥平面BCEF,
∵M(jìn)G平面BCEF,∴DM⊥MG,
∵梯形BFEC中,EC=FG=BG=1,BF∥EC,
∴四邊形EFGC是平行四邊形,可得EF∥CG
∵EF⊥平面ABF,
∴CG⊥平面ABF,可得CG⊥BG
Rt△BCG中,BG=1,BC=,可得CG==1
∴Rt△GCM中,GM==
又∵DM=CE=,
∴Rt△GDM中,DG==

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在等腰梯形ABCD中,AB∥DC,AB=4,CD=2,等腰梯形的高為3,O為AB中點(diǎn),PO⊥平面ABCD,垂足為O,PO=2,EA∥PO.
(1)求證:BD⊥平面EAC;
(2)求二面角E-AC-P的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在等腰梯形CDEF中,CB、DA是梯形的高,AE=BF=2,AB=2
2
,現(xiàn)將梯形沿CB、DA折起,使EF∥AB,且EF=2AB,得一簡(jiǎn)單組合體ABCDEF如圖所示,已知M、N、P分別為AF,BD,EF的中點(diǎn).
(1)求證:MN∥平面BCF;
(2)求證:AP⊥平面DAE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-1;幾何證明選講.
如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,過點(diǎn)D作AC的平行線DE,交BA的延長(zhǎng)線于點(diǎn)E.
求證:DE•DC=AE•BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•河北模擬)如圖,在等腰梯形ABCD中,CD=2,AB=4,AD=BC=
2
,E、F分別為CD、AB中點(diǎn),沿EF將梯形AFED折起,使得∠AFB=60°,點(diǎn)G為FB的中點(diǎn).
(1)求證:AG⊥平面BCEF
(2)求DG的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在等腰梯形ABCD中,上底CD=3,下底AB=4,E、F分別為AB、CD中點(diǎn),分別沿DE、CE把△ADE與△BCE折起,使A、B重合于點(diǎn)P.

(1)求證:PE⊥CD;
(2)若點(diǎn)P在面CDE的射影恰好是點(diǎn)F,求EF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案