焦點在x軸上的雙曲線C的左焦點為F,右頂點為 A,若線段F A的中垂線與雙曲線C相切,則雙曲線C的離心率是( 。
A、2
B、
2
C、3
D、
3
考點:雙曲線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:利用雙曲線的對稱性,以及幾何性質(zhì),列出a、c的關系式,即可求出雙曲線的離心率.
解答: 解:因為雙曲線的對稱軸是坐標軸,所以焦點在x軸上的雙曲線C的左焦點為F,右頂點為 A,若線段F A的中垂線與雙曲線C相切,可得:
a-c
2
=c
,即a=3c,∴雙曲線的離心率為3.
故選:C.
點評:本題考查雙曲線的簡單性質(zhì)的應用,離心率的求法,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)與橢圓
x2
9
+
y2
5
=1有相同的焦點F1,F(xiàn)2,且該雙曲線的漸近線方程為y=±
3
x.
(1)求雙曲線的標準方程;
(2)過該雙曲線的右焦點F2作斜率不為零的直線與此雙曲線的左,右兩支分別交于點m、n,設
MF2
F2N
,當x軸上的點G滿足
F1F2
⊥(
GM
GN
)時,求點G的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求f(x)=x3-ax2+x的單調(diào)區(qū)間
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校一個班中有20名男生和18名女生,從這38名學生中任選4名去參加一個周末“英語Party”.
(1)若選出的4名學生中恰有2名女生,則共有多少種不同的選法?
(2)若選出的4名學生中至多有2名女生,則共有多少種不同的選法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
e
0
xdx=
e2
2
,
e
0
x3dx=
e4
4
,求下列定積分:
(1)
e
0
(2x+x3)dx;
(2)
e
0
(2x3-x+1)dx.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某考察團對10個城市的職工人均工資x(千元)與居民人均消費y(千元)進行調(diào)查統(tǒng)計,得出y與x具有相關關系,且回歸方程為
?
y
=0.6x+1.2.若某城市職工人均工資為5千元,估計該城市人均消費額占人均工資收入的百分比為(  )
A、66%B、67%
C、79%D、84%

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,cosA=
7
25
,A=2B,∠A的平分線AD的長為10.
(1)求B的余弦值;
(2)求AC的邊長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在直角坐標系x Oy中,圓C的方程為
x=2cosθ+2
y=2sinθ
(θ為參數(shù)),在極坐標系(與直角坐標系x Oy取相同的長度單位,且以原點 O為極點,以x軸正半軸為極軸)中,直線l的方程為ρsinθ+2ρcosθ-4=0.若l與C相交于 A,B兩點,則以 A B為直徑的圓的面積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinα=
3
5
,α∈(0,
π
2
),tanβ=
1
3

(1)求tanα的值;
(2)求tan(α+2β)的值.

查看答案和解析>>

同步練習冊答案