(2011•南昌三模)連續(xù)擲兩次骰子分別得到的點(diǎn)數(shù)為m,n,則點(diǎn)P(m,n)在直線x+y=5左下方的概率為
1
6
1
6
分析:列舉出所有情況,再根據(jù)點(diǎn)與直線的位置關(guān)系觀察點(diǎn)P在直線x+y=5下方的情況數(shù)占總情況數(shù)的多少即可得到答案.
解答:解:由題意可得可以進(jìn)行列表:

表中前面的數(shù)表示m的取值,后面的數(shù)表示n的取值,
所以共36種情況,
所以根據(jù)點(diǎn)與直線的位置關(guān)系可得:點(diǎn)P在直線x+y=5下方的情況數(shù)有6種,
所以所求的概率為
1
6

故答案為:
1
6
點(diǎn)評(píng):考查等可能事件的概率的求法,用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比,而得到所求的情況數(shù)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•南昌三模)f(x)=
x+3    (x≤1)
-x2+2x+3,(x>1)
,則函數(shù)g(x)=f(x)-ex則函數(shù)g(x)=f(x)-ex的零點(diǎn)個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•南昌三模)若將(x-a)(x-b)逐項(xiàng)展開(kāi)得x2-ax-bx+ab,則x2出現(xiàn)的概率為
1
4
,x出現(xiàn)的概率為
1
2
,如果將(x-a)(x-b)(x-c)(x-d)(x-e)逐項(xiàng)展開(kāi),那么x3出現(xiàn)的概率為
5
16
5
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•南昌三模)設(shè)集合M={x|x>1},P={x|x>1,或x<-1},則下列關(guān)系中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•南昌三模)已知函數(shù)y=f(x)滿足f(3x)=3f(x),當(dāng)1<x<3時(shí),f(x)=1-|x-2|,那么x∈[1,3n],n∈N*時(shí),函數(shù)y=f(x)的圖象與x軸所圍成的圖形面積為
9n-1
8
9n-1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•南昌三模)已知數(shù)列{an}滿足a1=1,an=a1+
1
2
a2+
1
3
a3+…+
1
n-1
an-1(n>1)

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)An為數(shù)列{
4an-1
4an
}
的前n項(xiàng)積,是否存在實(shí)數(shù)a,使得不等式An
4an+1
<a
對(duì)一切n∈N*都成立?若存在,求出的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案