【題目】已知函數(shù).
(1)若在區(qū)間有最大值,求整數(shù)的所有可能取值;
(2)求證:當時, .
【答案】(1) ;(2)證明見解析.
【解析】試題分析:(1)在區(qū)間有最大值,即是在區(qū)間有極大值,求出,求出極大值點 ,令 ,從而可得結果;(2)等價于,只需證明即可.
試題解析:(1)f′(x)=(x2+x-2)ex,
當x<-2時,f′(x)>0,f(x)單調遞增,
當-2<x<1時,f′(x)<0,f(x)單調遞減,
當x>1時,f′(x)>0,f(x)單調遞增,
由題知:a<-2<a+5,得:-7<a<-2,
則a=-6、-5、-4、-3,
當a=-6、-5、-4,顯然符合題意,
若a=-3時,f(-2)=5e―2,f(2)=e2,f(-2)<f(2),不符合題意,舍去.
故整數(shù)a的所有可能取值-6,―5,-4.
(2)f(x)<-3lnx+x3+(2x2-4x)ex+7可變?yōu)?-x2+3x-1)ex<-3lnx+x3+7,
令g(x)=(-x2+3x-1)ex,h(x)=-3lnx+x3+7,
g′(x)=(-x2+x+2)ex,
0<x<2時,g′(x)>0,g(x)單調遞增,
當x>2時,g′(x)<0,g(x)單調遞減,
g(x)的最大值為g(2)=e2,
h′(x)=,當0<x<1時,h′(x)<0,h(x)單調遞減,
當x>1時,h′(x)>0,h(x)單調遞增,
h(x)的最小值為h(1)=8>e2,
g(x)的最大值小于h(x)的最小值,
故恒有g(x)<h(x),即f(x)<-3lnx+x3+(2x2-4x)ex+7.
科目:高中數(shù)學 來源: 題型:
【題目】二次函數(shù)f(x)的圖象經(jīng)過點(0, ),且f′(x)=﹣x﹣1,則不等式f(10x)>0的解集為( )
A.(﹣3,1)
B.(﹣lg3,0)
C.( ,1)
D.(﹣∞,0)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解患肺心病是否與性別有關,在某醫(yī)院對入院者用簡單隨機抽樣方法抽取50人進行調查,結果如下列聯(lián)表:
(Ⅰ)是否有的把握認為入院者中患肺心病與性別有關?請說明理由;
(Ⅱ)已知在患肺心病的10位女性中,有3位患胃。F(xiàn)在從這10位女性中,隨機選出3名進行其它方面的排查,記選出患胃病的女性人數(shù)為,求的分布列和數(shù)學期望;
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
K | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一條公路上,每隔100km有個倉庫(如圖),共有5個倉庫.一號倉庫存有10t貨物,二號倉庫存20t,五號倉庫存40t,其余兩個倉庫是空的.現(xiàn)在想把所有的貨物放在一個倉庫里,如果每噸貨物運輸1km需要0.5元運輸費,那么要多少才行?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的離心率為, 為該橢圓的右焦點,過點任作一直線交橢圓于兩點,且的最大值為4.
(1)求橢圓的方程;
(2)設橢圓的左頂點為,若直線分別交直線于兩點,求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,△OAB是等腰三角形,∠AOB=120°.以O為圓心, OA為半徑作圓.
(1)證明:直線AB與⊙O相切;
(2)點C,D在⊙O上,且A,B,C,D四點共圓,證明:AB∥CD.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)是定義在R上的奇函數(shù),且在區(qū)間(0,+∞)上是單調遞增,若 ,△ABC的內角滿足f(cosA)<0,則A的取值范圍是( )
A.( , )
B.( ,π)
C.(0, )∪( ,π)
D.( , )∪( ,π)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】分層抽樣是將總體分成互不交叉的層,然后按照一定的比例,從各層獨立地抽取一定數(shù)量的個體,組成一個樣本的抽樣方法;在《九章算術》第三章“衰分”中有如下問題:“今有甲持錢五百六十,乙持錢三百五十,丙持錢一百八十,凡三人俱出關,關稅百錢.欲以錢多少衰出之,問各幾何?”其譯文為:今有甲持560錢,乙持350錢,丙持180錢,甲、乙、丙三人一起出關,關稅共100錢,要按照各人帶錢多少的比例進行交稅,問三人各應付多少稅?則下列說法錯誤的是( )
A. 甲應付錢 B. 乙應付錢
C. 丙應付錢 D. 三者中甲付的錢最多,丙付的錢最少
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com