在一個(gè)人數(shù)很多的團(tuán)體中普查某種疾病,為此要抽N個(gè)人的血,可以用兩種方法進(jìn)行.(1)將每個(gè)人的血分別去驗(yàn),這就需N次.(2)按k個(gè)人一組進(jìn)行分組,把從k個(gè)人抽出來(lái)的血混在一起進(jìn)行檢驗(yàn),如果這混合血液呈陰性反應(yīng),就說(shuō)明k個(gè)人的血液都呈陰性反應(yīng),這樣,這k個(gè)人的血就只需驗(yàn)一次.若呈陽(yáng)性,則再對(duì)這k個(gè)人的血液分別進(jìn)行化驗(yàn).這樣,這k個(gè)人的血總共要化驗(yàn)k+1次.假設(shè)每個(gè)人化驗(yàn)呈陽(yáng)性的概率為p,且這些人的試驗(yàn)反應(yīng)是相互獨(dú)立的.
(Ⅰ)設(shè)以k個(gè)人為一組時(shí),記這k個(gè)人總的化驗(yàn)次數(shù)為X,求X的分布列與數(shù)學(xué)期望;
(Ⅱ)設(shè)以k個(gè)人為一組,從每個(gè)人平均需化驗(yàn)的次數(shù)的角度說(shuō)明,若p=0.1,選擇適當(dāng)?shù)膋,按第二種方法可以減少化驗(yàn)的次數(shù),并說(shuō)明k取什么值時(shí)最適宜.(取ln0.9=-0.105)
考點(diǎn):離散型隨機(jī)變量及其分布列,離散型隨機(jī)變量的期望與方差
專(zhuān)題:應(yīng)用題,概率與統(tǒng)計(jì)
分析:(Ⅰ)k個(gè)人一組的混合血液呈陰性結(jié)果的概率為(1-p)k,呈陽(yáng)性結(jié)果的概率為1-(1-p)k,可得X的分布列與數(shù)學(xué)期望;
(Ⅱ)由題意,f(k)=1-0.9k+
1
k
小于1且取得最小值時(shí),就能得到最好的分組方法.
解答: 解:(Ⅰ)k個(gè)人一組的混合血液呈陰性結(jié)果的概率為(1-p)k,呈陽(yáng)性結(jié)果的概率為1-(1-p)k
X 1 k+1
P (1-p)k 1-(1-p)k
∴EX=k[1-(1-p)k]+1                       …(6分)
(Ⅱ)由題意,f(k)=1-0.9k+
1
k
小于1且取得最小值時(shí),就能得到最好的分組方法.
∵f′(3)=-0.035<0,f′(4)=0.006>0
且f(3)>f(4),∴k=4最適宜                                           …(12分)
點(diǎn)評(píng):本題主要考查了導(dǎo)數(shù)知識(shí)的運(yùn)用,同時(shí)考查了離散型變量的數(shù)學(xué)期望以及計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某高校從參加今年自主招生考試的學(xué)生中,隨機(jī)抽取容量為50的學(xué)生成績(jī)樣本,得頻率分布表如下:
組號(hào) 分組 頻數(shù) 頻率
第一組 [230,235) 8 0.16
第二組 [235,240) 0.24
第三組 [240,245) 15
第四組 [245,250) 10 0.20
第五組 [250,255) 5 0.10
合計(jì) 50 1.00
(l)寫(xiě)出表中①②位置的數(shù)據(jù);
(2)為了選拔出更優(yōu)秀的學(xué)生,高校決定在第三組、第四組、第五組中用分層抽樣法,抽取6名學(xué)生進(jìn)行第二輪考核,分別求第三、第四、第五各組參加考核的人數(shù);
(3)在(2)的前提下,高校決定在這6名學(xué)生中錄取2名學(xué)生,其中有ξ名第三組的,求ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a,b,c分別為角A、B、C的對(duì)邊,且10sin2
B+C
2
-5sin(2014π-A)=12,
π
4
<A<
π
2

(1)求cosA的值;
(2)若a=8,b=5,求向量
BA
BC
方向上的射影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ),(ω>0,A>0,φ∈(0,
π
2
))的部分圖象如圖所示,其中點(diǎn)P是圖象的一個(gè)最高點(diǎn).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)已知α∈(π,
2
),且f(
α
2
-
12
)=
6
5
,求f(
α
2
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an},{bn}滿(mǎn)足a1=2,2an=1+anan+1,bn=an-1,數(shù)列{bn}的前n項(xiàng)和為Sn,Tn=S2n-Sn
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)求證:Tn+1>Tn;
(3)求證:當(dāng)n≥2時(shí),S2n
7n+11
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)多面體的直觀圖、正(主)視圖、側(cè)(左)視圖、俯視圖如圖,M、N分別為A1B、B1C1的中點(diǎn).

下列結(jié)論中正確的是
 
.(填上所有正確項(xiàng)的序號(hào))
①線MN與A1C 相交;②MN⊥BC;③MN∥平面ACC1A1;④三棱錐N-A1BC的體積為V N-A1BC=
1
6
a3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,設(shè)D是圖中邊長(zhǎng)為2的正方形區(qū)域,E是函數(shù)y=x3的 圖象與x軸及x=±1圍成的陰影區(qū)域.向D中隨機(jī)投一點(diǎn),則該點(diǎn)落入E中的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于實(shí)數(shù)x的不等式|2x-2|-|2x-1-2|<3的解集為A,則A為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,菱形ABCD的邊長(zhǎng)為
3
,∠ABC=60°,點(diǎn)P為對(duì)角線BD上任意一點(diǎn),則
BP
•(
PA
-
PC
)=
 
;
BP
•(
PA
+
PC
)的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案