【題目】本小題滿分12已知橢圓C: 的離心率為,右焦點為(,0).(1)求橢圓C的方程;(2)若過原點作兩條互相垂直的射線,與橢圓交于A,B兩點,求證:點O到直線AB的距離為定值.

【答案】(1) ,(2) O到直線 的距離為定值.

【解析】試題分析:(1)根據(jù)焦點和離心率列方程解出a,b,c;

(2)對于AB有無斜率進行討論,設(shè)出A,B坐標(biāo)和直線方程,利用根與系數(shù)的關(guān)系和距離公式計算;

試題解析:(1)由右焦點為(,0),則 ,又離心率為,所以 , ,

(2) 設(shè) , ,若k存在,則設(shè)直線AB:y=kx+m.

OAOBx1x2+y1y2=x1x2+(k x1+m) (k x2+m)=(1+k2) x1x2+k m(x1+x2)=0 代入,得4 m2=3 k2+3原點到直線AB的距離 , 當(dāng)AB的斜率不存在時, ,可得, 依然成立.所以點O到直線的距離為定值 .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),曲線在點處的切線與直線垂直.

1)求的值;

(2)若對于任意的恒成立,求的取值范圍;

(3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)設(shè)函數(shù)的圖象在點兩處的切線分別為l1,l2.若,且,求實數(shù)c的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)在區(qū)間上是增函數(shù),且最大值為10,最小值為4,則在區(qū)間的最大值、最小值分別是( )

A. -4,-10 B. 4,-10

C. 10,4 D. 不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)證明:

(2)若對任意,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示, 四棱錐底面是直角梯形, 底面, 的中點, .

(Ⅰ)證明: ;

(Ⅱ)證明: ;

(Ⅲ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若存在實數(shù),使=成立,則稱的不動點.

⑴當(dāng)時,求的不動點;

(2)當(dāng)時,函數(shù)內(nèi)有兩個不同的不動點,求實數(shù)的取值范圍;

(3)若對于任意實數(shù),函數(shù)恒有兩個不相同的不動點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家分析發(fā)現(xiàn)“喜歡空間想象”與“性別”有關(guān),某數(shù)學(xué)興趣小組為了驗證此結(jié)論,從全體組員中按分層抽樣的方法抽取50名同學(xué)(男生30人、女生20人),給每位同學(xué)立體幾何題、代數(shù)題各一道,讓各位同學(xué)自由選擇一道題進行解答,選題情況統(tǒng)計如下表:(單位:人)

立體幾何題

代數(shù)題

總計

男同學(xué)

22

8

30

女同學(xué)

8

12

20

總計

30

20

50

(1)能否有97.5%以上的把握認(rèn)為“喜歡空間想象”與“性別”有關(guān)?

(2)經(jīng)統(tǒng)計得,選擇做立體幾何題的學(xué)生正答率為,且答對的學(xué)生中男生人數(shù)是女生人數(shù)的5倍,現(xiàn)從選擇做立體幾何題且答錯的學(xué)生中任意抽取兩人對他們的答題情況進行研究,求恰好抽到男女生各一人的概率.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2014山東.理15】已知函數(shù),對函數(shù),定義關(guān)于的對稱函數(shù)為函數(shù),滿足:對于任意,兩個點關(guān)于點對稱,若關(guān)于對稱函數(shù),且恒成立,則實數(shù)的取值范圍是_________.

查看答案和解析>>

同步練習(xí)冊答案