【題目】【2014山東.理15】已知函數,對函數,定義關于的對稱函數為函數,滿足:對于任意,兩個點關于點對稱,若是關于的“對稱函數”,且恒成立,則實數的取值范圍是_________.
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)已知橢圓C: 的離心率為,右焦點為(,0).(1)求橢圓C的方程;(2)若過原點作兩條互相垂直的射線,與橢圓交于A,B兩點,求證:點O到直線AB的距離為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】用長為18 m的鋼條圍成一個長方體形狀的框架,要求長方體的長與寬之比為2:1,問該長方體的長、寬、高各為多少時,其體積最大?最大體積是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2017屆江蘇如東高級中學等四校高三12月聯(lián)考】已知數列滿足,,且對任意,都有.
(1)求,;
(2)設().
①求數列的通項公式;
②設數列的前項和,是否存在正整數,,且,使得,,成等比數列?若存在,求出,的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x-1|+|x+1|(x∈R).
(1)證明:函數f(x)是偶函數;
(2)利用絕對值及分段函數知識,將函數解析式寫成分段函數的形式,然后畫出函數圖象;
(3)寫出函數的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點,橢圓的左,右頂點分別為.過點的直線與橢圓交于兩點,且的面積是的面積的3倍.
(Ⅰ)求橢圓的方程;
(Ⅱ)若與軸垂直,是橢圓上位于直線兩側的動點,且滿足,試問直線的斜率是否為定值,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在中學生綜合素質評價某個維度的測評中,分“優(yōu)秀、合格、尚待改進”三個等級進行學生互評.某校高一年級有男生500人,女生400人,為了了解性別對該維度測評結果的影響,采用分層抽樣方法從高一年級抽取了45名學生的測評結果,并作出頻數統(tǒng)計表如下:
表1:男生
表2:女生
(1)從表二的非優(yōu)秀學生中隨機選取2人交談,求所選2人中恰有1人測評等級為合格的概率;
(2)由表中統(tǒng)計數據填寫下邊2×2列聯(lián)表,并判斷是否有90%的把握認為“測評結果優(yōu)秀與性別有關”.
參考數據與公式:
K2=,其中n=a+b+c+d.
臨界值表:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司生產一種電子儀器的固定成本為20000元,每生產一臺儀器需增加投入100元,已知總收益滿足函數: ,其中是儀器的月產量
(1)將利潤表示為月產量的函數
(2)當月產量為何值時,公司所獲利潤最大?最大利潤是多少元?(總收益=總成本+利潤)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com