10.p:實數(shù)a使得x2-ax+1<0有解,q:實數(shù)a滿足函數(shù)y=ax在定義域內(nèi)遞增.
(1)p為真時,a的取值范圍.
(2)p∧q為假,且p∨q為真時,a的取值范圍.

分析 (1)根據(jù)二次函數(shù)的性質(zhì)求出a的范圍即可;(2)通過討論p,q的真假,得到關(guān)于a的不等式組,解出即可.

解答 解:(1)p為真時:△>0,△=a2-4>0,解得:a<-2或a>2,
∴當p為真時:a的范圍是(-∞,-2)∪(2,+∞);
(2)q為真時:a>1,
由p∧q為假,p∨q為真知:p,q一真一假,
p真q假時:$\left\{\begin{array}{l}{a>2或a<-2}\\{a≤1}\end{array}\right.$,解得:a<-2;
p假q真時:$\left\{\begin{array}{l}{-2≤a≤2}\\{a>1}\end{array}\right.$,解得:1<a≤2,
綜上:a∈(-∞,-2)∪(1,2]時,結(jié)論成立.

點評 本題考查了復合命題的判斷,考查二次函數(shù)以及指數(shù)函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

20.已知$\overrightarrow a=(m+1,0,2m),\overrightarrow b=(6,2n-1,2),若\overrightarrow a∥\overrightarrow b$,則m與n的值分別為( 。
A.$\frac{1}{5}$,$\frac{1}{2}$B.-$\frac{1}{5}$,-$\frac{1}{2}$C.5,2D.-5,-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,左右頂點分別為A1,A2,過F1作斜率不為0的直線l與橢圓交于A,B兩點,△ABF2的周長為8.橢圓上一點P與A1,A2連線的斜率之積${k_{P{A_1}}}•{k_{P{A_2}}}=-\frac{1}{4}$(點P不是左右頂點A1,A2).
(Ⅰ)求該橢圓方程;
(Ⅱ)已知定點M(0,m)(其中常數(shù)m>0),求橢圓上動點N與M點距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=mx2+2mx+1.
(1)當m=1時,求不等式f(x)>-x-2的解集.
(2)若f(x)>0對任意x∈R恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角等于$\frac{π}{3}$,若|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,則2$\overrightarrow{a}$-3$\overrightarrow$的模長為$\sqrt{61}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設(shè)函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0),在($\frac{π}{6}$,$\frac{π}{2}$)上既無最大值,也無最小值,且-f($\frac{π}{2}$)=f(0)=f($\frac{π}{6}$),則下列結(jié)論成立的是①②④.(把你認為正確結(jié)論的序號都寫上)
①若f(x1)≤f(x2)對任意實數(shù)x恒成立,則x2-x1必定是$\frac{π}{2}$的整數(shù)倍;
②y=f(x)的圖象關(guān)于($\frac{4π}{3}$,0)對稱;
③對于函數(shù)y=|f(x)|(x∈R)的圖象,x=-$\frac{5π}{12}$一定是一條對稱軸且相鄰兩條對稱軸之間的距離是$\frac{π}{2}$;
④函數(shù)f(x)在每一個[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$](k∈Z)上具有嚴格的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{a}^{x},x<0}\\{(a-2)x+3a,x≥0}\end{array}\right.$滿足對任意的x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,則a的取值范圍是(0,$\frac{1}{3}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.如果一個點是一個指數(shù)函數(shù)與一個對數(shù)函數(shù)的圖象的公共點,那么稱這個點為“好點”.在下面的四個點M(1,1)、$P({\frac{1}{2},\frac{1}{2}})$、Q(2,1)、$H({2,\frac{1}{2}})$中,“好點”的個數(shù)為( 。﹤.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.福州為了迎接青運會,計劃從2011年到2015年,每年年初投入資金用于更新和改進體育場所與設(shè)施,若2011年年初投入a萬元,以后每年年初投入的資金比上一年遞增10%,則投入的總資金約為(參考數(shù)據(jù) 1.14≈1.46,1.15≈1.61)( 。
A.4.6a萬元B.6.1a萬元C.14.6a萬元D.16.1a萬元

查看答案和解析>>

同步練習冊答案