分析 把n=1代入已知的式子求出a1的值,當(dāng)n≥2時(shí)可得$4{S}_{n-1}={a}_{n-1}^{2}+2{a}_{n-1}$,利用an=Sn-Sn-1 兩式作差后化簡得到遞推公式,由等差數(shù)列的定義和通項(xiàng)公式求出答案.
解答 解:由題意知,$4{S}_{n}={a}_{n}^{2}+2{a}_{n}(n∈{N}^{*})$,
當(dāng)n=1時(shí),$4{S}_{1}={a}_{1}^{2}+2{a}_{1}$,
解得a1=2或a1=0(舍去),
當(dāng)n≥2時(shí),$4{S}_{n}={a}_{n}^{2}+2{a}_{n}$,①
$4{S}_{n-1}={a}_{n-1}^{2}+2{a}_{n-1}$,②,
①-②得,$4{a}_{n}={a}_{n}^{2}+2{a}_{n}-{a}_{n-1}^{2}-2{a}_{n-1}$,
則${a}_{n}^{2}-{a}_{n-1}^{2}-2({{a}_{n}+a}_{n-1})=0$,
所以(an+an-1)(an-an-1-2)=0,
因?yàn)閿?shù)列{an}各項(xiàng)均為正數(shù),
所以an-an-1-2=0,即an-an-1=2,
則數(shù)列{an}是以2為首項(xiàng)、公差的等差數(shù)列,
所以an=2+2(n-1)=2n,
故答案為:2n.
點(diǎn)評 本題考查數(shù)列前n項(xiàng)和與通項(xiàng)公式的關(guān)系:當(dāng)n≥2時(shí)an=Sn-Sn-1,數(shù)列的遞推公式,以及等差數(shù)列的定義和通項(xiàng)公式的應(yīng)用,考查化簡、變形能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | -1 | C. | -2 | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | R | B. | ($\frac{1}{3}$,1) | C. | (0,$\frac{1}{3}$) | D. | (-∞,0]∪[$\frac{1}{3}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{\sqrt{3}}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 8 | C. | 9 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com