17.若$a={2^{sin\frac{π}{5}}}$,$b={log_{\frac{π}{5}}}^{\frac{π}{4}}$,$c={log_2}sin\frac{π}{5}$( 。
A.c>a>bB.a>c>bC.b>a>cD.a>b>c

分析 利用指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性求解.

解答 解:∵$a={2^{sin\frac{π}{5}}}$>20=1,
0=$lo{g}_{\frac{π}{5}}1$<$b={log_{\frac{π}{5}}}^{\frac{π}{4}}$<$lo{g}_{\frac{π}{5}}\frac{π}{5}$=1,
$c={log_2}sin\frac{π}{5}$<log21=0,
∴a>b>c.
故選:D.

點(diǎn)評(píng) 本題考查三個(gè)數(shù)的大小的比較,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.不等式$\frac{3x}{2x-1}≤2$的解集為$({-∞,\frac{1}{2}})∪[{2,+∞})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.求證:
(1)a2+b2+c2≥ab+bc+ac
(2)(ac+bd)2≤(a2+b2)(c2+d2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知z是純虛數(shù),且(2+i)z=1+ai3(i是虛數(shù)單位,a∈R),則|a+z|=(  )
A.1B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),兩定點(diǎn)A,B滿(mǎn)足  則點(diǎn)集|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=2,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,$\left\{{P\left|{\overrightarrow{OP}=λ\overrightarrow{OA}+μ\overrightarrow{OB}}\right.}\right\}$,|λ|+|μ|≤1( λ、μ為實(shí)數(shù))所表示的區(qū)域的面積是( 。
A.8B.4$\sqrt{2}$C.4D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知集合M={x|x<0,x∈R},N={x|x2+x-2=0,x∈R},則M∩N=( 。
A.ϕB.{-2}C.{1}D.{-2,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.動(dòng)點(diǎn)P到直線(xiàn)x+5=0的距離減去它到M(2,0)的距離的差等于3,則點(diǎn)P的軌跡是( 。
A.直線(xiàn)B.橢圓C.雙曲線(xiàn)D.拋物線(xiàn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的上頂點(diǎn)到右頂點(diǎn)的距離為2,左焦點(diǎn)為F(-$\sqrt{2}$,0),過(guò)點(diǎn)D(0,3)且斜率為k的直線(xiàn)l交橢圓于A,B兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程及k的取值范圍;
(2)在y軸上是否存在定點(diǎn)E,使$\overrightarrow{AE}$•$\overrightarrow{BE}$恒為定值?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與雙曲線(xiàn)C2有共同的左右焦點(diǎn)F1,F(xiàn)2,兩曲線(xiàn)的離心率之積e1•e2=1,D是兩曲線(xiàn)在第一象限的交點(diǎn),則F1D:F2D=$\frac{2{a}^{2}}{^{2}}$-1(用a,b表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案