若圓O1:x2+y2-2mx+m2-4=0與圓O2:x2+y2+2x-4my+4m2-8=0相切,則實數(shù)m的取值集合是(  )
A、{-
12
5
,2}
B、{-
2
5
,0}
C、{-
12
5
,-
2
5
,2}
D、{-
12
5
,-
2
5
,0,2}
考點:圓與圓的位置關系及其判定
專題:直線與圓
分析:求出兩個圓的圓心與半徑,通過圓心距與半徑和與差相等求出m的值即可.
解答: 解:圓O1:x2+y2-2mx+m2-4=0的圓心(m,0),半徑為:2.
與圓O2:x2+y2+2x-4my+4m2-8=0的圓心(-1,2m),半徑為:3.
圓心距為:
(m+1)2+4m2
 
,
兩個圓相外切:
(m+1)2+4m2
 
=5,
兩個圓相內切:
(m+1)2+4m2
 
=1,
解得m=-
12
5
,-
2
5
,0,2.
實數(shù)m的取值集合是{-
12
5
,-
2
5
,0,2}.
故選:D.
點評:本題考查兩個圓的位置關系的應用,圓的一般方程的應用,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

計算:
(1)2log510+log50.05;
(2)(2a
1
3
b
2
3
)•(-3a
1
2
b
1
3
)÷(-3a
5
6
b)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U=R,非空集合A={x|
x-2
x-(3a+1)
<0},B={x|
x-a2-2
x-a
<0}.命題p:x∈A,命題q:x∈B
(Ⅰ)當a=
1
2
時,若p真q假,求x的取值范圍;
(Ⅱ)若q是p的必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,三內角A,B,C所對的邊分別為a,b,c,且滿足,
m
=(a,b),
n
=(sinA,sinB),
p
=(
2
a,c),
q
=(sinB,sinC),
m
n
=
p
q

(Ⅰ)求角C;
(Ⅱ)若c=
2
-1,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f(x)=x2-2(a-1)x+2在(-∞,3]上是減函數(shù),則a的取值范圍是( 。
A、a>4B、a<4
C、a≥4D、a≤4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的前n項和為Sn,且Sn+an=1,數(shù)列{bn}滿足b1=4,bn+1=3bn-2;
(1)求數(shù)列{an}和{bn}的通項公式;
(2)設數(shù)列{cn}滿足cn=anlog3(b2n-1-1),其前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,AB=
2
,AA1=2.
(1)證明:AA1⊥BD
(2)證明:平面A1BD∥平面CD1B1;
(3)求三棱柱ABD-A1B1D1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù):f(x)=x2-4|x|+1,若關于x的方程:f(x)=2k恰有四個不等的實數(shù)根,則實數(shù)k的取值范圍為( 。
A、-
3
2
<k<
1
2
B、-3<k<1
C、-6<k<2
D、k>-
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
-x2+2x,x≤1
2ax-5,x>1
,若存在x1,x2∈R且x1≠x2,使得f(x1)=f(x2)成立,則實數(shù)a的取值范圍是( 。
A、a<0B、a≤0
C、a<3D、0<a<3

查看答案和解析>>

同步練習冊答案