20.一個(gè)幾何體的三視圖如圖所示,則它的體積為( 。
A.$2\sqrt{2}$B.$2\sqrt{3}$C.$6\sqrt{2}$D.$6\sqrt{3}$

分析 由已知中的三視圖,可得該幾何體是一個(gè)以俯視圖為底面的三棱錐,代入棱錐體積公式,可得答案.

解答 解:由已知中的三視圖,可得該幾何體是一個(gè)以俯視圖為底面的三棱錐,
底面面積S=$\frac{1}{2}$×$(\sqrt{2}+\sqrt{2})$×(1+1)=2$\sqrt{2}$,
棱錐的高h(yuǎn)=3,
故體積V=$\frac{1}{3}Sh$=2$\sqrt{2}$,
故選:A

點(diǎn)評 本題考查的知識點(diǎn)是棱錐的體積和表面積,簡單幾何體的三視圖,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若函數(shù)$f(x)={x^2}+ax+\frac{1}{x}$在$({\frac{1}{2}\;\;,\;\;1})$內(nèi)任取兩個(gè)實(shí)數(shù)p,q,且p≠q,不等式$\frac{f(p)-f(q)}{p-q}>0$恒成立,則a的取值范圍是( 。
A.[-1,0]B.[-1,+∞)C.[0,3]D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=x-alnx,當(dāng)x>1時(shí),f(x)>0恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.(1,+∞)B.(-∞,1)C.(e,+∞)D.(-∞,e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.執(zhí)行如圖的程序框圖,當(dāng)n≥2,n∈Z時(shí),fn(x)表示fn-1(x)的導(dǎo)函數(shù),若輸入函數(shù)f1(x)=sinx-cosx,則輸出的函數(shù)fn(x)可化為( 。
A.$\sqrt{2}$sin(x+$\frac{π}{4}$)B.$\sqrt{2}$sin(x-$\frac{π}{4}$)C.-$\sqrt{2}$sin(x+$\frac{π}{4}$)D.-$\sqrt{2}$sin(x-$\frac{π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合P={x|-1≤x≤1},M={a},若P∩M=∅,則a取值范圍是(  )
A.(-∞,-1]B.[1,+∞)C.[-1,1]D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.一個(gè)正方體的頂點(diǎn)都在球面上,已知球的體積為36π,則正方體的棱長為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為:$\left\{{\begin{array}{l}{x=1+\sqrt{7}cosθ}\\{y=\sqrt{7}sinθ}\end{array}}\right.(θ是參數(shù))$,以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求曲線C的極坐標(biāo)方程;
(Ⅱ)已知直線l1:$2ρsin(θ+\frac{π}{3})-\sqrt{3}=0$,射線${l_2}:θ=\frac{π}{3}(ρ>0)$與曲線C的交點(diǎn)為P,l2與直線l1的交點(diǎn)為Q,求線段PQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.a(chǎn)>0是函數(shù)y=ax2+x+1在(0,+∞)上單調(diào)遞增的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知數(shù)列{an}為等比數(shù)列,Sn為其前n項(xiàng)和,且${S_n}=2017×{2016^n}-2018t$,則t=( 。
A.$\frac{2015}{2016}$B.$\frac{2016}{2017}$C.$\frac{2017}{2018}$D.$\frac{2018}{2019}$

查看答案和解析>>

同步練習(xí)冊答案