5.一個(gè)正方體的頂點(diǎn)都在球面上,已知球的體積為36π,則正方體的棱長為2$\sqrt{3}$.

分析 求出正方體的對角線的長度,就是外接球的直徑,利用球的體積公式求解即可.

解答 解:因?yàn)橐粋(gè)正方體的頂點(diǎn)都在球面上,它的棱長為a,
所以正方體的外接球的直徑就是正方體的對角線的長度:$\sqrt{3}$a.
所以球的半徑為:$\frac{\sqrt{3}}{2}$a.
所求球的體積為$\frac{4π}{3}×(\frac{\sqrt{3}}{2}a)^{3}$=36π,
所以a=2$\sqrt{3}$.
故答案為2$\sqrt{3}$.

點(diǎn)評 本題考查球的內(nèi)接體,球的體積的求法,求出球的半徑是解題的關(guān)鍵,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某校共有高一、高二、高三學(xué)生1290人,其中高一480人,高二比高三多30人,為了解該校學(xué)生的身體健康情況,現(xiàn)采用分層抽樣方法進(jìn)行調(diào)查,在抽取的樣本中有高一學(xué)生96人,則該樣本中的高二學(xué)生人數(shù)為(  )
A.84B.78C.81D.96

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的焦點(diǎn)為F1,F(xiàn)2,若橢圓上存在滿足$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=\frac{1}{2}{b^2}$的點(diǎn)P,則橢圓的離心率的范圍是$[\frac{{\sqrt{3}}}{3},1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知f(x)=$\sqrt{3}$sinx•cosx+cos2x,銳角△ABC的三個(gè)角A,B,C所對的邊分別為a,b,c.
(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)若f(C)=1,求m=$\frac{{a}^{2}+^{2}+{c}^{2}}{ab}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.一個(gè)幾何體的三視圖如圖所示,則它的體積為(  )
A.$2\sqrt{2}$B.$2\sqrt{3}$C.$6\sqrt{2}$D.$6\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率為$\frac{1}{2}$,在x軸上有一點(diǎn)M(-3,0)滿足$\overrightarrow{M{F_2}}=2\overrightarrow{M{F_1}}$.
(1)求橢圓C的方程;
(2)直線l與直線x=2交于點(diǎn)A,與直線x=-2交于點(diǎn)B,且$\overrightarrow{{F_2}A}•\overrightarrow{{F_2}B}=0$,判斷并證明直線l與橢圓C的交點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.將參加數(shù)學(xué)競賽決賽的500名同學(xué)編號為:001,002,…,500,采用系統(tǒng)抽樣的方法抽取一個(gè)容量為50的樣本,且隨機(jī)抽的號碼為003,這500名學(xué)生分別在三個(gè)考點(diǎn)考試,從001到200在第一考點(diǎn),從201到355在第二考點(diǎn),從356到500在第三考點(diǎn),則第二考點(diǎn)被抽中的人數(shù)為( 。
A.14B.15C.16D.17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.命題p:“?x∈N+,($\frac{1}{2}$)x≤$\frac{1}{2}$”的否定為( 。
A.?x∈N+,($\frac{1}{2}$)x>$\frac{1}{2}$B.?x∉N+,($\frac{1}{2}$)x>$\frac{1}{2}$C.?x∉N+,($\frac{1}{2}$)x>$\frac{1}{2}$D.?x∈N+,($\frac{1}{2}$)x>$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若點(diǎn)P是方程$\sqrt{{{(x-5)}^2}+{y^2}}-\sqrt{{{(x+5)}^2}+{y^2}}=6$所表示的曲線上的點(diǎn),同時(shí)P又是直線y=4上的點(diǎn),則點(diǎn)P的橫坐標(biāo)為$-3\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊答案