雙曲線
x2
9
-
y2
4
=1
的漸近線方程是( 。
A、y=±
3
2
x
B、y=±
2
3
x
C、y=±
9
4
x
D、y=±
4
9
x
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專(zhuān)題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:求出雙曲線的a,b,再由漸近線方程,即可得到.
解答: 解:雙曲線
x2
9
-
y2
4
=1
的a=3,b=2,
則雙曲線的漸近線方程為:y=±
b
a
x,
即為y=±
2
3
x.
故選B.
點(diǎn)評(píng):本題考查雙曲線的方程和性質(zhì):漸近線方程,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

現(xiàn)欲建造一個(gè)無(wú)蓋的長(zhǎng)方體水池,其長(zhǎng)、寬、高分別為a、a、b,且a2•b=3,已知底面的單位造價(jià)為150元,四壁的單位造價(jià)為100元,
(1)試求無(wú)蓋的長(zhǎng)方體水池的總造價(jià)y表示為a的函數(shù);
(2)當(dāng)a為何值時(shí),總價(jià)y取得最小值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在有限數(shù)列{an}中,Sn是{an}的前n項(xiàng)和,我們把
S1+S2+S3+…+Sn
n
稱(chēng)為數(shù)列{an}的“均和”.現(xiàn)有一個(gè)共2010項(xiàng)的數(shù)列{an}:a1,a2,a3,…,a2009,a2010若其“均和”為2011,則有2011項(xiàng)的數(shù)列1,a1,a2,a3,…,a2009,a2010的“均和”為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:a1=-
1
4
,an+1=1-
1
an
,則a2009=( 。
A、
4
5
B、5
C、-
1
4
D、
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)角α∈(0,
π
2
),f(x)的定義域?yàn)閇0,1],f(0)=0,f(1)=1,當(dāng)x≥y時(shí),有f(
x+y
2
)=f(x)sinα+(1-sinα)f(y)
(1)求f(
1
2
)、f(
1
4
)的值;
(2)求α的值;(3)設(shè)g(x)=4sin(2x+α)-1,且lgg(x)>0,求g(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C的極坐標(biāo)方程為ρ=
4cosθ
sin2θ
,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=-
2
2
t
y=1+
2
2
t
(t為參數(shù)).
(Ⅰ)把曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,把直線l的參數(shù)方程化為普通方程;
(Ⅱ)求直線l被曲線C截得的線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}的通項(xiàng)公式為an=
1
(n+1)(n+2)
,其前n項(xiàng)和為
7
18
,則n為( 。
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,M、N分別為PA、BC的中點(diǎn),且PD=AD=1,
(1)求證:MN∥平面PCD;
(2)求證:平面PAC⊥平面PBD;
(3)求三棱錐P-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)P(1,2)和圓C:x2+y2+2kx+2y+k2=0上的點(diǎn)距離的最小值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案