2.函數(shù)f(x)=$\frac{x^3}{{{2^{|x|}}+1}}$的圖象大致為(  )
A.B.C.D.

分析 根據(jù)函數(shù)為奇函數(shù),它的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),當(dāng)x>0時(shí),f(x)>0,當(dāng)x趨于+∞時(shí),f(x)趨于0,從而得出結(jié)論.

解答 解:由于函數(shù)f(x)=$\frac{x^3}{{{2^{|x|}}+1}}$為奇函數(shù),故它的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),故排除B;
由于當(dāng)x>0時(shí),f(x)>0,故排除A;
再根據(jù)當(dāng)x趨于+∞時(shí),f(x)趨于0,故排除D,
故選:C.

點(diǎn)評(píng) 本題主要考查函數(shù)的圖象特征,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,由若干個(gè)小正方形組成的k層三角形圖陣,第一層有1個(gè)小正方形,第二層有2個(gè)小正方形,依此類(lèi)推,第k層有k個(gè)小正方形,除去最底下的一層,每個(gè)小正方形都放置在它下一層的兩個(gè)小正方形之上.現(xiàn)對(duì)第k層的每個(gè)小正方形用數(shù)字進(jìn)行標(biāo)注,從左到右依次記為x1,x2,…xk,其中xi∈{0,1}(1≤i≤k),其它小正方形標(biāo)注的數(shù)字是它下面兩個(gè)小正方形標(biāo)注的數(shù)字之和,依此規(guī)律,記第一層的小正方形標(biāo)注的數(shù)字為x0;
(1)當(dāng)k=4時(shí),若要求x0為2的倍數(shù),則有多少種不同的標(biāo)注方法?
(2)當(dāng)k=11時(shí),若要求x0為3的倍數(shù),則有多少種不同的標(biāo)注方法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在△ABC中,角A、B、C所對(duì)的邊分別是a、b、c,且滿(mǎn)足csinA-$\sqrt{3}$acosC=0.
(1)求角C的大;
(2)若c=2,求△ABC的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(x,4),若$\overrightarrow a$∥$\overrightarrow b$,則實(shí)數(shù)x的值為( 。
A.8B.2C.-2D.-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列四個(gè)結(jié)論正確的是(  )
①若p∧q是真命題,則¬p可能是真命題;
②命題“?x0∈R,x02-x0-1<0”的否定是“?x∈R,x2-x-1≥0”;
③“a>5且b>-5”是“a+b>0”的充要條件;
④當(dāng)α<0時(shí),冪函數(shù)y=xα在區(qū)間(0,+∞)上單調(diào)遞減.
A.①④B.②③C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.下列敘述錯(cuò)誤的是( 。
A.頻率是隨機(jī)的,在試驗(yàn)前不能確定,隨著試驗(yàn)次數(shù)的增加,頻率一定會(huì)越來(lái)越接近概率
B.有甲乙兩種報(bào)紙可供某人訂閱,事件B:”至少訂一種報(bào)”與事件C:“至多訂一種報(bào)”是對(duì)立事件
C.互斥事件不一定是對(duì)立事件,但是對(duì)立事件一定是互斥事件
D.從區(qū)間(-10,10)內(nèi)任取一個(gè)整數(shù),求取到大于1且小于5的概率模型是幾何概型

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.對(duì)于定義域?yàn)镈的函數(shù)y=f(x),若同時(shí)滿(mǎn)足下列條件:
①f(x)在D內(nèi)單調(diào)遞增或單調(diào)遞減;
②存在區(qū)間[a,b]⊆D,使f(x)在[a,b]上的值域?yàn)閇a,b],則把y=f(x),x∈D叫閉函數(shù).
(1)求閉函數(shù)y=x3符合條件②的區(qū)間[a,b];
(2)判斷函數(shù)f(x)=$\frac{3}{4}$x+$\frac{1}{x}$,(x>0)是否為閉函數(shù)?并說(shuō)明理由;
(3)已知[a,b]是正整數(shù),且定義在(1,m)的函數(shù)y=k-$\frac{9}{x+1}$是閉函數(shù),求正整數(shù)m的最小值,及此時(shí)實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,在半徑為$\sqrt{3}$,圓心角為60°的扇形的弧上任取一點(diǎn)P,作扇形的內(nèi)接矩形PNMQ,使點(diǎn)Q在OA上,點(diǎn)N,M在OB上,設(shè)矩形PNMQ的面積為y,∠POB=θ.
(Ⅰ)將y表示成θ的函數(shù)關(guān)系式,并寫(xiě)出定義域;
(Ⅱ)求矩形PNMQ的面積取得最大值時(shí)$\overrightarrow{OP}$•$\overrightarrow{ON}$的值;
(Ⅲ)求矩形PNMQ的面積y≥$\frac{\sqrt{6}-\sqrt{3}}{2}$的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.用a代表紅球,b代表藍(lán)球,c代表黑球,由加法原理及乘法原理,從1個(gè)紅球和1個(gè)藍(lán)球中取出若干個(gè)球的所有取法可由(1+a)•(1+b)的展開(kāi)式1+a+b+ab表示出來(lái),如:“1”表示一個(gè)球都不取、“a”表示取出一個(gè)紅球,而“ab”表示把紅球和藍(lán)球都取出來(lái),以此類(lèi)推,下列各式中,其展開(kāi)式可用來(lái)表示從3個(gè)無(wú)區(qū)別的紅球、3個(gè)無(wú)區(qū)別的藍(lán)球、2個(gè)有區(qū)別的黑球中取出若干個(gè)球,且所有藍(lán)球都取出或都不取出的所有取法的是①
①(1+a+a2+a3)(1+b3)(1+c)2
②(1+a3)(1+b+b2+b3)(1+c)2
③(1+a)3(1+b+b2+b3)(1+c2
④(1+a3)(1+b)3(1+c+c2

查看答案和解析>>

同步練習(xí)冊(cè)答案