已知向量a=(2cosα,2sinα),b=(3cosβ,3sinβ),a與b的夾角為60°,則直線xcosα-ysinα+1=0與圓(x-cosβ)2+(y+sinβ)2=1的位置關系是


  1. A.
    相切
  2. B.
    相交
  3. C.
    相離
  4. D.
    隨α,β的值而定
C
分析:由已知利用向量的數(shù)量積的定義可求得cosαcosβ+sinαsinβ=,要判斷直線xcosα-ysinα+1=0與圓的位置關系,只要判斷圓心(cosβ,-sinβ)到直線xcosα-ysinα+1=0的距離d=|cosαcosβ+sinαsinβ+1|與圓的半徑的比較即可
解答:由題意可得||=2,,==2×3×=3
即6cosαcosβ+6sinαsinβ=3
∴cosαcosβ+sinαsinβ=
∵圓心(cosβ,-sinβ)到直線xcosα-ysinα+1=0的距離d=|cosαcosβ+sinαsinβ+1|=
∴直線xcosα-ysinα+1=0與圓(x-cosβ)2+(y+sinβ)2=1相離
故選:C
點評:本題主要考查了向量的數(shù)量積的定義及坐標表示,直線與圓的位置關系的判斷,綜合應用向量,點到直線的距離公式等知識.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(2cosα,2sinα),
b
=(3cosβ,3sinβ),若向量
a
b
的夾角為60°,則直線xcosα-ysinα+
1
2
=0
與圓(x-cosβ)2+(y+sinβ)2=
1
2
的位置關系是( 。
A、相交B、相切
C、相離D、相交且過圓心

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(2cosα,2sinα),
b
=(3cosβ,3sinβ),若
a
b
的夾角為60°,則直線2xcosα-2ysinα+1=0與圓(x-cosβ)2+(y+sinβ)2=1的位置關系是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(2cosα,2sinα),
b
=(3cosβ,3sinβ),
a
b
的夾角為60°,則直線xcosα-ysinα+1=0與圓(x-cosβ)2+(y+sinβ)2=1的位置關系是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•德州二模)已知向量
a
=(2cosωx,-1),
b
=(
3
sinωx+cosωx,1)(ω>0),函數(shù)f(x)=
a
b
的最小正周期為π.
(I)求函數(shù)f(x)的表達式及最大值;
(Ⅱ)若在x∈[0,
π
2
]
上f(x)≥a恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(2cosα,2sinα),
b
=(3cosβ,3sinβ),若<
a
,
b
>=60°,則直線:xcosα-ysinα+
1
2
=0與圓:(x-cosβ)2+(y+sinβ)2=1的位置關系是( 。

查看答案和解析>>

同步練習冊答案