12.設(shè)曲線y=a(x-1)-lnx在點(1,0)處的切線方程為y=2x-2,則a=(  )
A.0B.1C.2D.3

分析 求出函數(shù)的導(dǎo)數(shù),求得切線的斜率,由切線的方程可得a的方程,即可得到a.

解答 解:y=a(x-1)-lnx的導(dǎo)數(shù)為y′=a-$\frac{1}{x}$,
可得在點(1,0)處的切線斜率為k=a-1,
由切線方程為y=2x-2可得:a-1=2,解得a=3.
故選:D.

點評 本題考查導(dǎo)數(shù)的運用:求切線的斜率,注意運用直線方程和導(dǎo)數(shù)公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=x3+3x2-9x+5的單調(diào)遞增區(qū)間是(-∞,-3),(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.復(fù)數(shù)$\frac{{\sqrt{2}-i}}{{1+\sqrt{2}i}}$=( 。
A.iB.-iC.$2\sqrt{2}-i$D.$-2\sqrt{2}+i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若x∈R,則“-2≤x≤3”是“|x|<2”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求過點(3,6)被圓x2+y2=25截得線段的長為8的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若正項等比數(shù)列{an}滿足a2+a4=3,a3a5=2,則該數(shù)列的公比q=$\sqrt{\frac{3\sqrt{2}+2}{7}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.直線l與橢圓$\frac{x^2}{4}$+$\frac{y^2}{3}$=1相切于點P,與直線x=4交于點Q,以PQ為直徑的圓過定點M,則M必在直線(  )上.
A.x=0B.y=0C.y=1D.x=5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.下列函數(shù)中,在區(qū)間(0,+∞)上不是增函數(shù)的是④.
①y=2x②y=lgx③y=x3④y=$\frac{1}{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若復(fù)數(shù)z滿足z=3+4i,復(fù)數(shù)z的共軛復(fù)數(shù)為$\overline{z}$,則z•$\overline{z}$=( 。
A.24B.25C.26D.27

查看答案和解析>>

同步練習(xí)冊答案