(本小題滿分12分)某公司對工廠A的一批產(chǎn)品進行了抽樣檢測。右圖是根據(jù)抽樣檢測后的產(chǎn)品凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖,其中產(chǎn)品凈重的范圍是[96,106],樣本數(shù)據(jù)分組為[96,98),[98,100),[100,102),[102,104),[104,106]。
(1)求圖中x的值;
(2)若將頻率視為概率,從這批產(chǎn)品中有放回地隨機抽取3件,求至多有2件產(chǎn)品的凈重在的概率;
(3)經(jīng)過考察后,該公司決定在2011年年初投資到工廠A50萬元,到年底可能獲利,也可能虧損,且這兩種情況發(fā)生的概率分別為合格產(chǎn)品和不合格產(chǎn)品的概率(若產(chǎn)品凈重在為合格產(chǎn)品,其余為不合格產(chǎn)品)。設(shè)2011年底公司的投資總資產(chǎn)(本金+利潤)為,求的分布列及數(shù)學(xué)期望。
(本小題滿分12分)
解:(1)依題意及頻率分布直方圖知,, 2分
解得 ………… 3分
(2)法1:設(shè)所抽取到得產(chǎn)品的件數(shù)為X,由題意知,,因此
………… 5分
所以至多有2件產(chǎn)品的凈重在的概率
。……… 7分
法2:恰好抽取到3件產(chǎn)品的凈重在的概率為
………… 5分
所以至多有2件產(chǎn)品的凈重在的概率
。 ………… 7分(3)法1:可能的值為:50×(1+32%)=66(萬元)
50×(1-16%)=42(萬元) ………… 8分
………… 10分
|
|
|
|
|
|
故的分布列為
………… 11分
(萬元). ………… 12分
命題意圖:本題主要考查頻率分布直方圖、二項分布、離散型隨機變量的期望等知識,立足考查數(shù)據(jù)處理能力、計算能力和解決實際問題的能力.
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com