分析 (I)利用遞推關系即可得出.
(II)利用“錯位相減法”與等比數列的求和公式即可得出.
解答 解:(Ⅰ)因為Sn=n2+2n,
所以當n≥2時,an=Sn-Sn-1=n2+2n-[(n-1)2+2(n-1)]=2n+1.…3分
當n=1時,a1=S1=12+2×1=3,滿足上式.…4分
故an=2n+1.…5分
(Ⅱ)因為bn=2n.所以anbn2=(2n+1)4n,…6分
其前n項和:Tn=3•4+5•42+7•43+…+(2n-1)•4n-1+(2n+1)•4n①…8分
兩邊乘以4得:4Tn=3•42+5•43+…+(2n-1)•4n+(2n+1)•4n+1…②
由①-②得:-3Tn=3•4+2•42+2•43+…+2•4n-(2n+1)•4n+1
=$\frac{{8({4^n}-1)}}{3}+4-(2n+1)•{4^{n+1}}$…11分
所以Tn=$\frac{{(6n+1)•{4^{n+1}}-4}}{9}$. …12分.
點評 本題考查了“錯位相減法”與等比數列的求和公式、數列遞推關系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | z≤42? | B. | z≤20? | C. | z≤50? | D. | z≤52? |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $y=\sqrt{x^2}$ | B. | $y=\root{3}{x^3}$ | C. | $y={(\sqrt{x})^2}$ | D. | $y=\frac{x^2}{x}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com