【題目】已知橢圓的左、右焦點(diǎn)分別為,,離心率為,過(guò)作直線(xiàn)與橢圓交于,兩點(diǎn),的周長(zhǎng)為8.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)問(wèn):的內(nèi)切圓面積是否有最大值?若有,試求出最大值;若沒(méi)有,說(shuō)明理由.
【答案】(1);(2)
【解析】
(1)由離心率得,再利用的周長(zhǎng)為8得,從而得到的值,進(jìn)而得到橢圓的方程;
(2)將的內(nèi)切圓面積的最大值轉(zhuǎn)化為求的值最大,設(shè),,直線(xiàn),從而將面積表示成關(guān)于的函數(shù),再利用換元法研究函數(shù)的最值.
(1)離心率為,,
的周長(zhǎng)為8,,得,
,,
因此,橢圓的標(biāo)準(zhǔn)方程為.
(2)設(shè)的內(nèi)切圓半徑為,,
又,,
要使的內(nèi)切圓面積最大,只需的值最大.
設(shè),,直線(xiàn),
聯(lián)立消去得:,
易得,且,,
所以
,
設(shè),則,
設(shè),,所以在上單調(diào)遞增,
所以當(dāng),即時(shí),的最大值為3,
此時(shí),所以的內(nèi)切圓面積最大為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方體的棱長(zhǎng)為分別是棱,的中點(diǎn),過(guò)點(diǎn)的平面分別與棱,交于點(diǎn),設(shè).給出以下四個(gè)命題:
①平面與平面所成角的最大值為45°;
②四邊形的面積的最小值為;
③四棱錐的體積為;
④點(diǎn)到平面的距離的最大值為.
其中命題正確的序號(hào)為( )
A.②③④B.②③C.①②④D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】最近,紀(jì)錄片《美國(guó)工廠(chǎng)》引起中美觀(guān)眾熱議,大家都認(rèn)識(shí)到,大力發(fā)展制造業(yè),是國(guó)家強(qiáng)盛的基礎(chǔ),而產(chǎn)業(yè)工人的年齡老化成為阻礙美國(guó)制造業(yè)發(fā)展的障礙,中國(guó)應(yīng)未雨綢繆.某工廠(chǎng)有35周歲以上(含35周歲)工人300名,35周歲以下工人200名,為研究工人的日平均生產(chǎn)量是否與年齡有關(guān).現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計(jì)了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“35周歲以上(含35周歲)”和“35周歲以下”分為兩組,在將兩組工人的日平均生產(chǎn)件數(shù)分成5組:分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.
(1)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機(jī)抽取2人,求至少抽到一名“35周歲以下組”工人的概率.
(2)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為“生產(chǎn)能手”,請(qǐng)你根據(jù)已知條件完成的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“生產(chǎn)能手與工人所在的年齡組有關(guān)”?
生產(chǎn)能手 | 非生產(chǎn)能手 | 合計(jì) | |
35歲以下 | |||
35歲以上 | |||
合計(jì) |
附表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象關(guān)于直線(xiàn)對(duì)稱(chēng),則( )
A.函數(shù)為奇函數(shù)
B.函數(shù)在上單調(diào)遞增
C.若,則的最小值為
D.函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度得到函數(shù)的圖象
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“一帶一路”是“絲綢之路經(jīng)濟(jì)帶”和“21世紀(jì)海上絲綢之路”的簡(jiǎn)稱(chēng),旨在積極發(fā)展我國(guó)與沿線(xiàn)國(guó)家經(jīng)濟(jì)合作關(guān)系,共同打造政治互信、經(jīng)濟(jì)融合、文化包容的命運(yùn)共同體.自2013年以來(lái),“一帶一路”建設(shè)成果顯著下圖是2013-2017年,我國(guó)對(duì)“一帶一路”沿線(xiàn)國(guó)家進(jìn)出口情況統(tǒng)計(jì)圖,下列描述正確的是( ).
A.這五年,2013年出口額最少
B.這五年,出口總額比進(jìn)口總額多
C.這五年,出口增速前四年逐年下降
D.這五年,2017年進(jìn)口增速最快
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,卷一《方田》中有如下兩個(gè)問(wèn)題:
[三三]今有宛田,下周三十步,徑十六步.問(wèn)為田幾何?
[三四]又有宛田,下周九十九步,徑五十一步.問(wèn)為田幾何?
翻譯為:[三三]現(xiàn)有扇形田,弧長(zhǎng)30步,直徑長(zhǎng)16步.問(wèn)這塊田面積是多少?
[三四]又有一扇形田,弧長(zhǎng)99步,直徑長(zhǎng)51步.問(wèn)這塊田面積是多少?
則下列說(shuō)法正確的是( )
A.問(wèn)題[三三]中扇形的面積為240平方步B.問(wèn)題[三四]中扇形的面積為平方步
C.問(wèn)題[三三]中扇形的面積為60平方步D.問(wèn)題[三四]中扇形的面積為平方步
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為(為參數(shù)),曲線(xiàn)的參數(shù)方程為(為參數(shù)),曲線(xiàn)與軸交于兩點(diǎn).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.
(1)求直線(xiàn)的普通方程及曲線(xiàn)的極坐標(biāo)方程;
(2)若直線(xiàn)與曲線(xiàn)在第一象限交于點(diǎn),且線(xiàn)段的中點(diǎn)為,點(diǎn)在曲線(xiàn)上,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在四棱錐中,底面是邊長(zhǎng)為的正方形,是正三角形,CD平面PAD,E,F,G,O分別是PC,PD,BC,AD 的中點(diǎn).
(Ⅰ)求證:PO平面;
(Ⅱ)求平面EFG與平面所成銳二面角的大;
(Ⅲ)線(xiàn)段上是否存在點(diǎn),使得直線(xiàn)與平面所成角為,若存在,求線(xiàn)段的長(zhǎng)度;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知由n(n∈N*)個(gè)正整數(shù)構(gòu)成的集合A={a1,a2,…,an}(a1<a2<…<an,n≥3),記SA=a1+a2+…+an,對(duì)于任意不大于SA的正整數(shù)m,均存在集合A的一個(gè)子集,使得該子集的所有元素之和等于m.
(1)求a1,a2的值;
(2)求證:“a1,a2,…,an成等差數(shù)列”的充要條件是“”;
(3)若SA=2020,求n的最小值,并指出n取最小值時(shí)an的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com