函數(shù)y=2x-2-x是( )
A.奇函數(shù),在區(qū)間(0,+∞)上單調(diào)遞增
B.奇函數(shù),在區(qū)間(0,+∞)上單調(diào)遞減
C.偶函數(shù),在區(qū)間(-∞,0)上單調(diào)遞增
D.偶函數(shù),在區(qū)間(-∞,0)上單調(diào)遞減
【答案】分析:利用奇函數(shù)的定義,借助于導(dǎo)數(shù),確定函數(shù)的單調(diào)性,即可得到結(jié)論.
解答:解:設(shè)f(x)=2x-2-x,則f(-x)=2-x-2x,∴f(-x)=-f(x),∴函數(shù)y=2x-2-x是奇函數(shù)
∵f′(x)=2xln2+2-xln2>0,∴函數(shù)y=2x-2-x,在區(qū)間(0,+∞)上單調(diào)遞增
故選A.
點(diǎn)評(píng):本題考查函數(shù)的性質(zhì),考查導(dǎo)數(shù)知識(shí)的運(yùn)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題①:函數(shù)y=2x-2-x為奇函數(shù);命題②:函數(shù)y=x-
1x
在其定義域上是增函數(shù);命題③:“a,b∈R,若ab=0,則a=0且b=0”的逆命題;命題④:已知a,b∈R,“a>b”是“a2>b2”成立的充分不必要條件.上述命題中,真命題的序號(hào)有
 
.(請(qǐng)把你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p1:函數(shù)y=2x-2-x在R為增函數(shù),p2:函數(shù)y=2x+2-x在R為減函數(shù),則在命題q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2和q4:p1∧(¬p2)中,真命題是( 。
A、q1,q3B、q2,q3C、q1,q4D、q2,q4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
2x+2-x-
5
2
的定義域?yàn)?!--BA-->
(-∞,-1]∪[1,+∞).
(-∞,-1]∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p1:函數(shù)y=2x-2-x在R上為增函數(shù),p2:函數(shù)y=2x+2-x在R上為減函數(shù),則在命題q1:p1∨p2,q2:p1∧p2;q3:(¬p1)∨p2;q4:p1∨(¬p2);其中為真命題的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:函數(shù)y=2x-2-x在R上為減函數(shù);命題q:函數(shù)y=2x+2-x在R上為增函數(shù);則下列命題中是真命題的是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案