在圓x2+y2-2x-6y=0內(nèi),過(guò)點(diǎn)E(0,1)的最長(zhǎng)弦和最短弦分別是AC和BD,則四邊形ABCD的面積為( 。
A、5
2
B、20
2
C、15
2
D、10
2
考點(diǎn):直線(xiàn)與圓的位置關(guān)系
專(zhuān)題:直線(xiàn)與圓
分析:根據(jù)圓的標(biāo)準(zhǔn)方程求出圓心M的坐標(biāo)和半徑,最長(zhǎng)的弦即圓的直徑,故AC的長(zhǎng)為2 
10
,最短的弦BD和ME垂直,且經(jīng)過(guò)點(diǎn)E,由弦長(zhǎng)公式求出BD的值,再由ABCD的面積為 
1
2
AC×BD 求出結(jié)果.
解答: 解:圓x2+y2-2x-6y=0 即 (x-1)2+(y-3)2=10 表示以M(1,3)為圓心,以
10
為半徑的圓.
由圓的弦的性質(zhì)可得,最長(zhǎng)的弦即圓的直徑,AC的長(zhǎng)為2
10

∵點(diǎn)E(0,1),∴ME=
1+4
=
5

弦長(zhǎng)BD最短時(shí),弦BD和ME垂直,且經(jīng)過(guò)點(diǎn)E,此時(shí),BD=2
MB2-ME2
=2
10-5
=2
5

故四邊形ABCD的面積為
1
2
AC×BD=10
2

故選:D.
點(diǎn)評(píng):本題主要考查直線(xiàn)和圓的位置關(guān)系,兩點(diǎn)間的距離公式,弦長(zhǎng)公式的應(yīng)用,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α,β是銳角,且α≠45°,若cos(α-β)=sin(α+β),則tanβ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=log3(2x2+x)的單調(diào)增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知球面上有S,A,B,C四點(diǎn),且SA⊥平面ABC,∠ABC=90°,SC=2.則該球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線(xiàn)x+
3
y=0被圓x2+y2-4y=0所截得的弦長(zhǎng)為( 。
A、1
B、2
C、
3
D、2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a為如圖所示的程序框圖中輸出的結(jié)果,則a的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若正數(shù)x,y滿(mǎn)足x+4y-xy=0,則x+2y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

i是虛數(shù)單位,復(fù)數(shù)
2-3i
1-2i
=(  )
A、
4+i
3
B、
8+i
5
C、
8+i
3
D、
4+i
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
msinxcosx+mcos2x+n(m>0)在區(qū)間[0,
π
4
]
上的值域?yàn)閇1,2].
(Ⅰ) 求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ) 在△ABC中,角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,若f(A)=1,sinB=4sin(π-C),△ABC的面積為
3
,求邊長(zhǎng)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案