【題目】已知函數(shù)f(x)=|3x﹣4|.
(Ⅰ)記函數(shù)g(x)=f(x)+|x+2|﹣4,在下列坐標系中作出函數(shù)g(x)的圖象,并根據圖象求出函數(shù)g(x)的最小值;
(Ⅱ)記不等式f(x)<5的解集為M,若p,q∈M,且|p+q+pq|<λ,求實數(shù)λ的取值范圍.
【答案】解:(Ⅰ)函數(shù)g(x)=f(x)+|x+2|﹣4=|3x﹣4|+|x+2|﹣4, 圖象如圖所示,
由圖象可得,x= ,g(x)有最小值﹣ ;
(Ⅱ)由題意,|3x﹣4|<5,可得﹣ <x<3,∴p,q∈(﹣ ,3),
∴|p+q+pq|≤|p|+|q|+|pq|<3+3+3×3=15,
∴λ≥15.
【解析】(Ⅰ)根據函數(shù)解析式作出函數(shù)g(x)的圖象,并根據圖象求出函數(shù)g(x)的最小值;(Ⅱ)記不等式f(x)<5的解集為M,可得p,q∈(﹣ ,3),若p,q∈M,且|p+q+pq|<λ,利用絕對值不等式,即可求實數(shù)λ的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=cosx(sinx+cosx)-,x∈R.
(1)求函數(shù)f(x)的最小正周期和單調遞增區(qū)間;
(2)設>0,若函數(shù)g(x)=f(x+)為奇函數(shù),求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ax+ ,其中a>0.
(Ⅰ)討論函數(shù)f(x)的單調性;
(Ⅱ)證明:(1+ )(1+ )(1+ )…(1+ )<e (n∈N* , n≥2).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知平面直角坐標系中,曲線C1的參數(shù)方程為 (φ為參數(shù)),以原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=2cosθ.
(Ⅰ)求曲線C1的極坐標方程與曲線C2的直角坐標方程;
(Ⅱ)若直線θ= (ρ∈R)與曲線C1交于P,Q兩點,求|PQ|的長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠生產不同規(guī)格的一種產品,根據檢測標準,其合格產品的質量 與尺寸 之間滿足關系式 為大于 的常數(shù)),現(xiàn)隨機抽取6件合格產品,測得數(shù)據如下:
對數(shù)據作了處理,相關統(tǒng)計量的值如下表:
(1)根據所給數(shù)據,求 關于 的回歸方程(提示:由已知, 是 的線性關系);
(2)按照某項指標測定,當產品質量與尺寸的比在區(qū)間 內時為優(yōu)等品,現(xiàn)從抽取的6件合格產品再任選3件,求恰好取得兩件優(yōu)等品的概率;
(附:對于一組數(shù)據 ,其回歸直線 的斜率和截距的最小二乘法估計值分別為 )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題錯誤的是( )
A.命題“若 ,則 ”的逆命題為“若 ,則 ”
B.對于命題 ,使得 ,則 ,則
C.“ ”是“ ”的充分不必要條件
D.若 為假命題,則 均為假命題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《算法統(tǒng)綜》是明朝程大位所著數(shù)學名著,其中有這樣一段表述:“遠看巍巍塔七層,紅光點點倍加增,共燈三百八十一”,其意大致為:有一七層寶塔,每層懸掛的紅燈數(shù)為上一層的兩倍,共有381盞燈,則塔從上至下的第三層有( )盞燈.
A.14
B.12
C.10
D.8
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com