分析 構(gòu)造函數(shù)F(x),求出導數(shù),判斷F(x)在R上的單調(diào)性.原不等式等價為F(lnx)>F(2),運用單調(diào)性,可得lnx<2,運用對數(shù)不等式的解法,即可得到所求解集.
解答 解:可構(gòu)造函數(shù)F(x)=$\frac{f(x)}{{e}^{\frac{x}{2}}}$,
F′(x)=$\frac{f′(x)-\frac{1}{2}f(x)}{{e}^{\frac{x}{2}}}$,
由2 f'(x)<f (x),可得F′(x)<0,即有F(x)在R上遞減,
不等式f(lnx)>x${\;}^{\frac{1}{2}}$即為 $\frac{f(lnx)}{{e}^{\frac{lnx}{2}}}$>1,(x>0),
即有F(2)=$\frac{f(2)}{e}$=1,即為F(lnx)>F(2),
由F(x)在R上遞減,可得lnx<2,解得0<x<e2,
故答案為:(0,e2).
點評 本題考查導數(shù)的運用:求單調(diào)性,考查構(gòu)造法的運用,以及單調(diào)性的運用,對數(shù)不等式的解法.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 6π | B. | 7π | C. | 12π | D. | 14π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com