13.六安濱河公園噴泉中央有一個(gè)強(qiáng)力噴水柱,為了測(cè)量噴水柱噴出的水柱的高度,某人在水柱正西方向的A處測(cè)得水柱頂端的仰角為45°,沿A處向南偏東30°前進(jìn)50米到達(dá)點(diǎn)B處,在B處測(cè)得水柱頂端的仰角為30°,則水柱的高度是( 。
A.15mB.30mC.25mD.50m

分析 如圖所示,設(shè)水柱CD的高度為h.在Rt△ACD中,由∠DAC=45°,可得AC=h.由∠BAE=30°,可得∠CAB=60°.在Rt△BCD中,∠CBD=30°,可得BC=$\sqrt{3}$h.在△ABC中,由余弦定理可得:BC2=AC2+AB2-2AC•ABcos60°.代入即可得出.

解答 解:如圖所示
設(shè)水柱CD的高度為h.
在Rt△ACD中,∵∠DAC=45°,∴AC=h.
在Rt△BCD中,∠CBD=30°,∴BC=$\sqrt{3}$h.
在△ABC中,∠CAB=60°,由余弦定理可得:
BC2=AC2+AB2-2AC•ABcos60°.
∴3h2=h2+502-$2×50h×\frac{1}{2}$,
化為2h2+50h-2500=0,解得h=25.
故選C,

點(diǎn)評(píng) 本題考查了直角三角形的邊角關(guān)系、余弦定理,考查了推理能力和計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知定義在R上的奇函數(shù)f(x)滿足f(x)=x2-2x-3(x>0).
(Ⅰ) 若函數(shù)g(x)=|f(x)|-a有4個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍;
(Ⅱ) 求|f(x+1)|≤4的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.將函數(shù)f(x)=3sin4x+$\sqrt{3}$cos4x圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,再向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度,得到函數(shù)y=g(x)的圖象,則y=g(x)的圖象的一條對(duì)稱軸方程是( 。
A.x=$\frac{π}{12}$B.x=$\frac{π}{6}$C.x=$\frac{π}{3}$D.x=$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)Sn為各項(xiàng)不相等的等差數(shù)列an的前n 項(xiàng)和,已知a3a8=3a11,S3=9.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{$\frac{1}{{{a_n}{a_{n+1}}}}$}的前n 項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的短軸長(zhǎng)為2,離心率為$\frac{{2\sqrt{5}}}{5}$,拋物線G:y2=2px(p>0)的焦點(diǎn)F與橢圓E的右焦點(diǎn)重合,若斜率為k的直線l過拋物線G的焦點(diǎn)F與橢圓E相交于A,B兩點(diǎn),與拋物線G相交于C,D兩點(diǎn).
(Ⅰ)求橢圓E及拋物線G的方程;
(Ⅱ)是否存在實(shí)數(shù)λ,使得$\frac{1}{{|{AB}|}}+\frac{λ}{{|{CD}|}}$為常數(shù)?若存在,求出λ的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知圓O的半徑為2,它的內(nèi)接三角形ABC滿足c2-a2=4($\sqrt{3}$c-b)sinB,其中a,b,c分別為角A,B,C的對(duì)邊.
(Ⅰ)求角A;
(Ⅱ)求三角形ABC面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.將正整數(shù)12分解成兩個(gè)正整數(shù)的乘積有1×12,2×6,3×4三種,其中3×4是這三種分解中兩數(shù)差的絕對(duì)值最小的,我們稱3×4為12的最佳分解.當(dāng)p×q(p≤q且pq∈N*,)是正整數(shù)n的最佳分解時(shí),我們定義函數(shù)f(n)=q-p,例如f(12)=4-3=1.?dāng)?shù)列{f(3n)}的前100項(xiàng)和為350-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.大數(shù)據(jù)時(shí)代出現(xiàn)了滴滴打車服務(wù),二胎政策的放開使得家庭中有兩個(gè)小孩的現(xiàn)象普遍存在,某城市關(guān)系要好的A,B,C,D四個(gè)家庭各有兩個(gè)小孩共8人,準(zhǔn)備使用滴滴打車軟件,分乘甲、乙兩輛汽車出去游玩,每車限坐4名(乘同一輛車的4名小孩不考慮位置),其中A戶家庭的孿生姐妹需乘同一輛車,則乘坐甲車的4名小孩恰有2名來自于同一個(gè)家庭的乘坐方式共有( 。
A.18種B.24種C.36種D.48種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知角θ的頂點(diǎn)與原點(diǎn)重合,始邊與x軸的正半軸重合,終邊在直線$y=-\sqrt{3}x$上,則sin2θ=( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案