2.大數(shù)據(jù)時代出現(xiàn)了滴滴打車服務(wù),二胎政策的放開使得家庭中有兩個小孩的現(xiàn)象普遍存在,某城市關(guān)系要好的A,B,C,D四個家庭各有兩個小孩共8人,準(zhǔn)備使用滴滴打車軟件,分乘甲、乙兩輛汽車出去游玩,每車限坐4名(乘同一輛車的4名小孩不考慮位置),其中A戶家庭的孿生姐妹需乘同一輛車,則乘坐甲車的4名小孩恰有2名來自于同一個家庭的乘坐方式共有( 。
A.18種B.24種C.36種D.48種

分析 根據(jù)題意,分2種情況討論:①、A戶家庭的孿生姐妹在甲車上,甲車上剩下兩個要來自不同的家庭,②、A戶家庭的孿生姐妹不在甲車上,每種情況下分析乘坐人員的情況,由排列、組合數(shù)公式計(jì)算可得其乘坐方式的數(shù)目,由分類計(jì)數(shù)原理計(jì)算可得答案.

解答 解:根據(jù)題意,分2種情況討論:
①、A戶家庭的孿生姐妹在甲車上,甲車上剩下兩個要來自不同的家庭,
可以在剩下的三個家庭中任選2個,再從每個家庭的2個小孩中任選一個,來乘坐甲車,
有C32×C21×C21=12種乘坐方式;
②、A戶家庭的孿生姐妹不在甲車上,
需要在剩下的三個家庭中任選1個,讓其2個小孩都在甲車上,
對于剩余的2個家庭,從每個家庭的2個小孩中任選一個,來乘坐甲車,
有C31×C21×C21=12種乘坐方式;
則共有12+12=24種乘坐方式;
故選:B.

點(diǎn)評 本題考查排列、組合的應(yīng)用,涉及分類計(jì)數(shù)原理的應(yīng)用,關(guān)鍵是依據(jù)題意,分析“乘坐甲車的4名小孩恰有2名來自于同一個家庭”的可能情況.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知命題p,q是簡單命題,則“¬p是假命題”是“p∨q是真命題”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.六安濱河公園噴泉中央有一個強(qiáng)力噴水柱,為了測量噴水柱噴出的水柱的高度,某人在水柱正西方向的A處測得水柱頂端的仰角為45°,沿A處向南偏東30°前進(jìn)50米到達(dá)點(diǎn)B處,在B處測得水柱頂端的仰角為30°,則水柱的高度是( 。
A.15mB.30mC.25mD.50m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=|x-a|+|x+5-a|
(1)若不等式f(x)-|x-a|≤2的解集為[-5,-1],求實(shí)數(shù)a的值;
(2)若?x0∈R,使得f(x0)<4m+m2,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列說法正確的是( 。
A.?x,y∈R,若x+y≠0,則x≠1且y≠-1
B.a∈R,“$\frac{1}{a}<1$”是“a>1”的必要不充分條件
C.命題“?x∈R,使得x2+2x+3<0”的否定是“?x∈R,都有x2+2x+3>0”
D.設(shè)隨機(jī)變量X~N(1,52),若P(X<0)=P(X>a-2),則實(shí)數(shù)a的值為2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=|4x-a|+|4x+3|,g(x)=|x-1|-|2x|.
(1)解不等式g(x)>-3;
(2)若存在x1∈R,也存在x2∈R,使得f(x1)=g(x2)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知等差數(shù)列{an}中,Sn是數(shù)列{an}的前n項(xiàng)和,已知a2=9,S5=65.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列$\left\{{\frac{1}{{{S_n}-n}}}\right\}$的前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知三棱錐的外接球的表面積為25π,該三棱錐的三視圖如圖所示,三個視圖的外輪廓都是直角三角形,則其側(cè)視圖面積的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.定義在R上的偶函數(shù)f(x)滿足:對任意的x1,x2∈[0,+∞)(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}<0$.則(  )
A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(1)<f(-2)

查看答案和解析>>

同步練習(xí)冊答案