【題目】已知數(shù)列的首項,是數(shù)列的前項和,且滿足

1)若數(shù)列是等差數(shù)列,求的值;

2)確定的取值集合,使時,數(shù)列是遞增數(shù)列.

【答案】(1)(2)

【解析】

1)分別令,及,結(jié)合已知可由表示,結(jié)合等差數(shù)列的性質(zhì)可求;

2)由,得,化簡整理可得進(jìn)而有,則,兩式相減可得數(shù)列的偶數(shù)項和奇數(shù)項分別成等差數(shù)列,結(jié)合數(shù)列的單調(diào)性可求的范圍.

1)在中分別令,及

,

因為,所以

因為數(shù)列是等差數(shù)列,所以,即,解得

經(jīng)檢驗時,,,滿足

2)由,得,即

,因為,所以,①

所以,②

②-①,得.③

所以,④

④-③,得

即數(shù)列及數(shù)列都是公差為6的等差數(shù)列,

因為

所以

要使數(shù)列是遞增數(shù)列,須有,且當(dāng)為大于或等于3的奇數(shù)時,,

且當(dāng)為偶數(shù)時,,即,

n為大于或等于3的奇數(shù)),

n為偶數(shù)),

解得

所以,當(dāng)時,數(shù)列是遞增數(shù)列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知右焦點(diǎn)為的橢圓關(guān)于直線對稱的圖形過坐標(biāo)原點(diǎn).

是橢圓的左頂點(diǎn),斜率為的直線交,兩點(diǎn),點(diǎn)上,.

(Ⅰ)當(dāng)時,求的面積;

(Ⅱ)當(dāng)時,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】被嘉定著名學(xué)者錢大昕贊譽(yù)為“國朝算學(xué)第一”的清朝數(shù)學(xué)家梅文鼎曾創(chuàng)造出一類“方燈體”,“燈者立方去其八角也”,如圖所示,在棱長為的正方體中,點(diǎn)為棱上的四等分點(diǎn).

1)求該方燈體的體積;

2)求直線的所成角;

3)求直線和平面的所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠擬制造一個如圖所示的容積為36π立方米的有蓋圓錐形容器.

(1)若該容器的底面半徑為6米,求該容器的表面積;

(2)當(dāng)容器的高為多少米時,制造該容器的側(cè)面用料最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】.口袋中有質(zhì)地、大小完全相同的5個球,編號分別為1,2,3,45,甲、乙兩人玩一種游戲:甲先摸出一個球,記下編號,放回后乙再摸一個球,記下編號,如果兩個編號的和為偶數(shù)算甲贏,否則算乙贏.

)求甲贏且編號的和為6的事件發(fā)生的概率;

)這種游戲規(guī)則公平嗎?試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若曲線在點(diǎn)處的切線方程為,求的值;

2)當(dāng)時,求證:;

3)設(shè)函數(shù),其中為實(shí)常數(shù),試討論函數(shù)的零點(diǎn)個數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為實(shí)數(shù).

1)若函數(shù)為定義域上的單調(diào)函數(shù),求的取值范圍.

2)若,滿足不等式成立的正整數(shù)解有且僅有一個,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),是定義域為的奇函數(shù).

(1)確定的值;

(2)若,函數(shù),求的最小值;

(3)若,是否存在正整數(shù),使得恒成立?若存在,請求出所有的正整數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的三個頂點(diǎn)

1)求邊所在直線的一般式方程;

2邊上中線的方程為,且,求點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案