已知函數(shù).
(1)若函數(shù)處取得極值,且函數(shù)只有一個零點,求的取值范圍.
(2)若函數(shù)在區(qū)間上不是單調函數(shù),求的取值范圍.

 (1);(2).

解析試題分析:(1)函數(shù)處取得極值,知,再由函數(shù)只有一個零點和函數(shù)的圖象特點判斷函數(shù)的極大值和極小值和0的大小關系即可解決,這是解決三次多項式函數(shù)零點個數(shù)的一般方法,體現(xiàn)了數(shù)形結合的數(shù)形思想;(2)三次函數(shù)的導函數(shù)是二次函數(shù),要使三次函數(shù)在不是單調函數(shù),則要滿足導數(shù)的,要使函數(shù)在區(qū)間上不是單調函數(shù),還要滿足三次函數(shù)的導函數(shù)在上至少有一個零點.
試題解析:(1),由,
所以,
可知:當時,,單調遞增;當時,,單調遞減;
時,,單調遞增;而.
所以函數(shù)只有一個零點,解得的取值范圍是.
.由條件知方程上有兩個不等的實根,且在至少有一個根.由 ;
使得:.
綜上可知:的取值范圍是.
考點:三次函數(shù)的零點、三次函數(shù)的單調性.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其中,為參數(shù),且
(1)當時,判斷函數(shù)是否有極值;
(2)要使函數(shù)的極小值大于零,求參數(shù)的取值范圍;
(3)若對(2)中所求的取值范圍內的任意參數(shù),函數(shù)在區(qū)間內都是增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)當時,試確定函數(shù)在其定義域內的單調性;
(2)求函數(shù)上的最小值;
(3)試證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)求函數(shù)上的最小值;
(2)若函數(shù)有兩個不同的極值點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)
解不等式;(4分)
事實上:對于成立,當且僅當時取等號.由此結論證明:.(6分)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其中為常數(shù),為自然對數(shù)的底數(shù).
(1)求的單調區(qū)間;
(2)若,且在區(qū)間上的最大值為,求的值;
(3)當時,試證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)求函數(shù)的單調區(qū)間;
(2)若函數(shù)滿足:
①對任意的,,當時,有成立;
②對恒成立.求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù).
(Ⅰ)證明:時,函數(shù)上單調遞增;
(Ⅱ)證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題


(Ⅰ)討論函數(shù)的單調性;
(Ⅱ)若,證明:時,成立

查看答案和解析>>

同步練習冊答案