已知函數(shù).
(1)若函數(shù)在處取得極值,且函數(shù)只有一個零點,求的取值范圍.
(2)若函數(shù)在區(qū)間上不是單調函數(shù),求的取值范圍.
(1);(2).
解析試題分析:(1)函數(shù)在處取得極值,知,再由函數(shù)只有一個零點和函數(shù)的圖象特點判斷函數(shù)的極大值和極小值和0的大小關系即可解決,這是解決三次多項式函數(shù)零點個數(shù)的一般方法,體現(xiàn)了數(shù)形結合的數(shù)形思想;(2)三次函數(shù)的導函數(shù)是二次函數(shù),要使三次函數(shù)在不是單調函數(shù),則要滿足導數(shù)的,要使函數(shù)在區(qū)間上不是單調函數(shù),還要滿足三次函數(shù)的導函數(shù)在上至少有一個零點.
試題解析:(1),由,
所以,
可知:當時,,單調遞增;當時,,單調遞減;
當時,,單調遞增;而.
所以函數(shù)只有一個零點或,解得的取值范圍是.
.由條件知方程在上有兩個不等的實根,且在至少有一個根.由 ;
由使得:.
綜上可知:的取值范圍是.
考點:三次函數(shù)的零點、三次函數(shù)的單調性.
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),其中,為參數(shù),且.
(1)當時,判斷函數(shù)是否有極值;
(2)要使函數(shù)的極小值大于零,求參數(shù)的取值范圍;
(3)若對(2)中所求的取值范圍內的任意參數(shù),函數(shù)在區(qū)間內都是增函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),其中為常數(shù),為自然對數(shù)的底數(shù).
(1)求的單調區(qū)間;
(2)若,且在區(qū)間上的最大值為,求的值;
(3)當時,試證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)求函數(shù)的單調區(qū)間;
(2)若函數(shù)滿足:
①對任意的,,當時,有成立;
②對恒成立.求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com