已知函數(shù).
(1)求函數(shù)在上的最小值;
(2)若函數(shù)有兩個不同的極值點、且,求實數(shù)的取值范圍.
(1)詳見解析;(2)實數(shù)的取值范圍是.
解析試題分析:(1)先求出函數(shù)在上的單調(diào)區(qū)間,并求出相應的極小值點,然后就極小值點是否在區(qū)間內(nèi)進行分類討論,分析函數(shù)在區(qū)間上的單調(diào)性,從而求出最小值;(2)將函數(shù)在定義域上有兩個極值點等價轉(zhuǎn)化為導函數(shù)方程在定義域上有兩個不等的實根,借助參數(shù)分離法先求出當函數(shù)有兩個極值點時,的取值范圍,然后求出當時的取值,利用圖象的特點即可以得到當時,參數(shù)的取值范圍.
試題解析:(1),所以,令,解得,列表如下:
①當時,即當時,則函數(shù)在區(qū)間上單調(diào)遞減,在上單調(diào)遞增,減 極小值 增
故函數(shù)在處取得極小值,亦即最小值,即;
②當時,函數(shù)在區(qū)間上單調(diào)遞增,此時函數(shù)在處取得最小值,
即,
綜上所述;
(2),所以,
函數(shù)有兩個極值點、,
等價于方程有兩個不等的正實根,
令,則,令
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)(≠0,∈R)
(Ⅰ)若,求函數(shù)的極值和單調(diào)區(qū)間;
(Ⅱ)若在區(qū)間(0,e]上至少存在一點,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù)
(1)當時,求函數(shù)的最大值;
(2)令()其圖象上任意一點處切線的斜率≤ 恒成立,求實數(shù)的取值范圍;
(3)當,,方程有唯一實數(shù)解,求正數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(Ⅰ)如果函數(shù)在區(qū)間上是單調(diào)函數(shù),求的取值范圍;
(Ⅱ)是否存在正實數(shù),使得函數(shù)在區(qū)間內(nèi)有兩個不同的零點(是自然對數(shù)的底數(shù))?若存在,求出實數(shù)的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(Ⅰ)若試確定函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若且對于任意恒成立,試確定實數(shù)的取值范圍;
(Ⅲ)設(shè)函數(shù)求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)若函數(shù)在處取得極值,且函數(shù)只有一個零點,求的取值范圍.
(2)若函數(shù)在區(qū)間上不是單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)若函數(shù)在上單調(diào)遞增,求實數(shù)的取值范圍.
(2)記函數(shù),若的最小值是,求函數(shù)的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com