分析 (1)f(x)+m≥0恒成立,可得$\frac{{{x^2}+3}}{x-m}$+m≥0,化為:x2+mx+3-m2≥0,令g(x)=x2+mx+3-m2,(x>m),通過(guò)對(duì)m分類討論,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值即可得出.
(2)f(x)的最小值為6,f(x)=$\frac{{{x^2}+3}}{x-m}$≥6,對(duì)于m∈R,x>m恒成立,可得x2-6x+9≥6-6m,即(x-3)2≥6-6m,對(duì)m分類討論,利用二次函數(shù)的單調(diào)性即可得出.
解答 解:(1)f(x)+m≥0恒成立,∴$\frac{{{x^2}+3}}{x-m}$+m≥0,化為:x2+mx+3-m2≥0,
令g(x)=x2+mx+3-m2,(x>m),
g′(x)=2x+m,
令g′(x)=2x+m=0,解得x=-$\frac{m}{2}$.
①m≥0時(shí),m>-$\frac{m}{2}$,則g(x)在(m,+∞)上單調(diào)遞增,
∴g(x)≥g(m)=m2+3>0,滿足條件.
②m<0時(shí),m<-$\frac{m}{2}$,則g(x)在x=-$\frac{m}{2}$時(shí)取得最小值,
∴$g(-\frac{m}{2})$=$\frac{{m}^{2}}{4}$-$\frac{{m}^{2}}{2}$+3-m2≥0,解得:$-\frac{2\sqrt{15}}{5}$≤m<0.
綜上可得:m的取值范圍是$[-\frac{2\sqrt{15}}{5},+∞)$.
(2)∵f(x)的最小值為6,f(x)=$\frac{{{x^2}+3}}{x-m}$≥6,對(duì)于m∈R,x>m恒成立,
∴x2-6x+9≥6-6m,即(x-3)2≥6-6m,
①m≥1時(shí),6-6m≤0,x>m時(shí),(x-3)2≥0,此時(shí)恒成立.
②m<1時(shí),x=3時(shí),6m-6≥0,解得m≥1舍去.
綜上可得:m≥1.
∴f(x)的最小值為6時(shí),m=1.
點(diǎn)評(píng) 本題考查了函數(shù)恒成立問(wèn)題、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值、二次函數(shù)的單調(diào)性,考查了分類討論方法、推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [0,2] | B. | [0,2) | C. | [0,1)∪(1,2] | D. | [0,4] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com