Loading [MathJax]/jax/output/CommonHTML/jax.js
2.判斷直線(xiàn)kx-y+3=0與橢圓x216+y24=1的位置關(guān)系.

分析 將直線(xiàn)方程y=kx+3,代入橢圓方程,由△>0,直線(xiàn)與橢圓相交,△=0,直線(xiàn)與橢圓的相切,△<0,直線(xiàn)與橢圓相離.

解答 解:當(dāng)x=0,y=3,直線(xiàn)恒過(guò)點(diǎn)(0,3),y=kx+3,
{y=kx+3x216+y24=1,整理得:(4k2+1)x2+24kx+20=0,
△=576k2-4×20×(4k2+1)=16(16k2-5),
(1)當(dāng)△=16(16k2-5)>0,即k>54或k<-54時(shí),直線(xiàn)kx-y+3=0與橢圓 x216+y24=1相交;
(2)當(dāng)△=16(16k2-5)=0,即k=54或k=-54時(shí),直線(xiàn)kx-y+3=0與橢圓 x216+y24=1相切;
(3)當(dāng)△=16(16k2-5)<0,即-54<k<54時(shí),直線(xiàn)kx-y+3=0與橢圓 x216+y24=1相離,
綜上可知:k∈(-∞,-54)∪(54,+∞)直線(xiàn)kx-y+3=0與橢圓 x216+y24=1相交;
k=54或k=-54時(shí),直線(xiàn)kx-y+3=0與橢圓 x216+y24=1相切;
k∈(-54,54),直線(xiàn)kx-y+3=0與橢圓 x216+y24=1相離.

點(diǎn)評(píng) 本題考查直線(xiàn)與橢圓的位置關(guān)系,考查分類(lèi)討論思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在四邊形ABCD中,AB=(2,-2),BC=(x,y),CD=(1,72).
(1)若BCDA,求x,y之間的關(guān)系式;
(2)滿(mǎn)足(1)的同時(shí)又有ACBD,求x,y的值以及四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知a12=49(a>0),則log23a=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖,在△ABC中,AB=2,AC=3,∠BAC=60°,AD是∠BAC的角平分線(xiàn)交BC于D,則ADAC的值等于(  )
A.175B.335C.6D.275

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列關(guān)系正確的是( �。�
A.{1}∈{1,2,3}B.{1}?{1,2,3}C.{1}?{1,2,3}D.{1}={1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.點(diǎn)P(1,-4)到直線(xiàn)4x+3y-2=0的距離為( �。�
A.2B.5C.7D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=log2(2x)•log2(4x),g(t)=fxt-3,其中t=log2x(4≤x≤8).
(1)求f(2)的值;
(2)求函數(shù)g(t)的解析式,判斷g(t)的單調(diào)性并用單調(diào)性定義給予證明;
(3)若a≤g(t)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)fx=a22x+1aR是奇函數(shù).
(1)求a的值;
(2)判斷函數(shù)f(x)的單調(diào)性,(不需證明)
(3)若對(duì)任意的t∈R,不等式f(kt2+2)+f(t2-tk)>0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.log36-log32=(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案