【題目】已知正項數(shù)列的前項和為,且,,數(shù)列滿足,且

I)求數(shù)列的通項公式;

II)令,求數(shù)列的前項和。

【答案】I;(II

【解析】

I)利用求得;根據(jù)求得,從而可知是等差數(shù)列,從而利用等差數(shù)列通項公式求得結(jié)果;利用可證得,可知數(shù)列的奇數(shù)項成等比、偶數(shù)項成等比,分別求解出為奇數(shù)和為偶數(shù)兩種情況下的通項公式即可;(II)由(I)可得,采用分組求和的方式;對采用錯位相減法求和;對分為為奇數(shù)和為偶數(shù)兩種情況來討論;從而可對兩個部分加和得到結(jié)果.

I)當時,,即

可得

即:

是公差為,首項為的等差數(shù)列

由題意得:

兩式相除得:

是奇數(shù)時,是公比是,首項的等比數(shù)列

同理是偶數(shù)時是公比是,首項的等比數(shù)列

綜上:

II,即

的前項和為,則

兩式相減得:

的前項和為

綜上:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)的圖象向左平移個單位,然后縱坐標不變,橫坐標變?yōu)樵瓉淼?/span>倍,得到的圖象,下面四個結(jié)論正確的是( )

A. 函數(shù)在區(qū)間上為增函數(shù)

B. 將函數(shù)的圖象向右平移個單位后得到的圖象關(guān)于原點對稱

C. 是函數(shù)圖象的一個對稱中心

D. 函數(shù)上的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】啟東市政府擬在蝶湖建一個旅游觀光項目,設(shè)計方案如下:如圖所示的圓O是圓形湖的邊界,沿線段AB,BC,CD,DA建一個觀景長廊,其中A,B,C,D是觀景長廊的四個出入口且都在圓O上,已知:BC=12百米,AB=8百米,在湖中P處和湖邊D處各建一個觀景亭,且它們關(guān)于直線AC對稱,在湖面建一條觀景橋APC.觀景亭的大小、觀景長廊、觀景橋的寬度均忽略不計,設(shè)

1)若觀景長廊AD4百米,CD=AB,求由觀景長廊所圍成的四邊形ABCD內(nèi)的湖面面積;

2)當時,求三角形區(qū)域ADC內(nèi)的湖面面積的最大值;

3)若CD=8百米且規(guī)劃建亭點P在三角形ABC區(qū)域內(nèi)(不包括邊界),試判斷四邊形ABCP內(nèi)湖面面積是否有最大值?若有,求出最大值,并寫出此時的值;若沒有,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,橢圓C:的左、右焦點分別為,,P為橢圓C上一點,且垂直于軸,連結(jié)并延長交橢圓于另一點,設(shè)

(1)若點的坐標為,求橢圓的方程;

(2)若,求橢圓的離心率的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人射擊,甲射擊一次中靶的概率是,乙射擊一次中靶的概率是,且是方程的兩個實根,已知甲射擊5次,中靶次數(shù)的方差是.

1)求,的值;

2)若兩人各射擊2次,至少中靶3次就算完成目標,則完成目標概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)當時,求不等式的解集;

(2)若不等式的解集為空集,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】旅行社為某旅行團包飛機去旅游,其中旅行社的包機費為15000元.旅游團中的每人的飛機票按以下方式與旅行社結(jié)算:若旅游團的人數(shù)不超過35人時,飛機票每張收費800元;若旅游團的人數(shù)多于35人,則給予優(yōu)惠,每多1人,機票費每張減少10元,但旅游團的人數(shù)最多有60人.設(shè)旅行團的人數(shù)為人,飛機票價格為元,旅行社的利潤為元.

(1)寫出飛機票價格元與旅行團人數(shù)之間的函數(shù)關(guān)系式;

(2)當旅游團的人數(shù)為多少時,旅行社可獲得最大利潤?求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,由直三棱柱和四棱錐構(gòu)成的幾何體中,,平面平面

(I)求證:

(II)若M為中點,求證:平面;

(III)在線段BC上(含端點)是否存在點P,使直線DP與平面所成的角為?若存在,求得值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某生產(chǎn)企業(yè)研發(fā)了一種新產(chǎn)品,該新產(chǎn)品在某網(wǎng)店試銷一個階段后得到銷售單價和月銷售量之間的一組數(shù)據(jù),如下表所示:

銷售單價(元)

9

9.5

10

10.5

11

月銷售量(萬件)

11

10

8

6

5

(I)根據(jù)統(tǒng)計數(shù)據(jù),求出關(guān)于的回歸直線方程,并預測月銷售量不低于12萬件時銷售單價的最大值;

(II)生產(chǎn)企業(yè)與網(wǎng)店約定:若該新產(chǎn)品的月銷售量不低于10萬件,則生產(chǎn)企業(yè)獎勵網(wǎng)店1萬元;若月銷售量不低于8萬件且不足10萬件,則生產(chǎn)企業(yè)獎勵網(wǎng)店5000元;若月銷售量低于8萬件,則沒有獎勵. 現(xiàn)用樣本估計總體,從上述5個銷售單價中任選2個銷售單價,求抽到的產(chǎn)品含有月銷售量不低于10萬件的概率.

參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為. 參考數(shù)據(jù):

查看答案和解析>>

同步練習冊答案