2.已知實數(shù)x,y,z滿足2x+y+3z=32,則$\sqrt{{{(x-1)}^2}+{{(y+2)}^2}+{z^2}}$的最小值為$\frac{16\sqrt{14}}{7}$.

分析 由條件利用柯西不等式(22+12+32)[(x-1)2+(y+2)2+z2]≥(2x-2+y+2+3z)2=322,求得$\sqrt{{{(x-1)}^2}+{{(y+2)}^2}+{z^2}}$的最小值.

解答 解:12+22+32=14,∴由柯西不等式可得(22+12+32)[(x-1)2+(y+2)2+z2]≥(2x-2+y+2+3z)2=322
∴$\sqrt{{{(x-1)}^2}+{{(y+2)}^2}+{z^2}}$≥$\frac{16\sqrt{14}}{7}$,即$\sqrt{{{(x-1)}^2}+{{(y+2)}^2}+{z^2}}$的最小值是$\frac{16\sqrt{14}}{7}$,
故答案為:$\frac{16\sqrt{14}}{7}$.

點評 本題主要考查了函數(shù)的最值,以及柯西不等式的應(yīng)用,解題的關(guān)鍵是利用柯西不等式(22+12+32)[(x-1)2+(y+2)2+z2]≥(2x-2+y+2+3z)2=322,進行解決.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某公園舉辦花展,其中一個展區(qū)平面圖如圖所示,中間區(qū)域是邊長為10米的正方形ABCD,兩側(cè)區(qū)域分別是以AD、BC為直徑的半圓,現(xiàn)在中間劃出一個三角形區(qū)域MPQ,其中M為AB的中點,PQ∥AB,現(xiàn)有甲、乙兩種花展出,甲種花的價格為2百元/平方米,填滿三角形區(qū)域MPQ,乙種花的價格為4百元/平方米,填滿其余區(qū)域.
(1)當P、Q分別是坐在半圓弧中點時,求該展區(qū)總費用(單位:百元);
(2)求該展區(qū)總費用的最小值(單位:百元)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知點P是橢圓$\frac{x^2}{4}$+$\frac{y^2}{3}$=1上任一點,那點P到直線l:x+2y-12=0的距離的最小值為$\frac{{8\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知ABCD-A1B1C1D1是邊長為1的正方體,P為線段AB1上的動點,Q為底面ABCD上的動點,則PC1+PQ最小值為( 。
A.$1+\frac{{\sqrt{2}}}{2}$B.$\sqrt{3}$C.2D.$\frac{{1+\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{2}$=1的焦點為F1,F(xiàn)2,點P在橢圓上,若PF1=4,則∠F1PF2的大小為$\frac{2}{3}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=ax2-2x+lnx+1.
(1)若函數(shù)f(x)在其定義域內(nèi)為單調(diào)遞增,求實數(shù)a的取值范圍;
(2)設(shè)g(x)=mx2+4mx+3,當a=1時,不等式f(x1)≤g(x2),x1∈(0,1],x2∈(-∞,+∞)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某校高二年級的一次數(shù)學(xué)考試中,為了分析學(xué)生的得分情況,隨機抽取M名同學(xué)的成績,數(shù)據(jù)的分組統(tǒng)計表如下:
分組頻數(shù)頻率頻率/組距
(40,50]20.020.002
(50,60]40.04  0.004
(60,70]110.110.011
(70,80]380.380.038
(80,90]mnp
(90,100]110.110.011
合計MNP
(1)求出表中M,n的值;
(2)為了了解某些同學(xué)在數(shù)學(xué)學(xué)習(xí)中存在的問題,現(xiàn)從樣本中分數(shù)在(40,60]中的6位同學(xué)中任意抽取2人進行調(diào)查,求分數(shù)在(40,50]和(50,60]中各有一人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若曲線y=ex-$\frac{a}{e^x}$(a>0)上任意一點切線的傾斜角的取值范圍是[${\frac{π}{3}$,$\frac{π}{2}}$),則a=( 。
A.$\frac{1}{12}$B.$\frac{1}{3}$C.$\frac{3}{4}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知拋物線C:y=x2,過點M(1,1)作兩條相互垂直的直線,與拋物線的另兩個交點分別為A,B
(Ⅰ)求拋物線C的準線方程;
(Ⅱ)直線AB是否過定點?若是,求出該定點的坐標;若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案