5.若關(guān)于x的方程x2+ax+a2-1=0有一正根和一負(fù)根,則實(shí)數(shù)a的取值范圍是( 。
A.-$\frac{2\sqrt{3}}{3}$<a<-1B.-2<a<2C.-1<a<1D.1<a<$\frac{2\sqrt{3}}{3}$

分析 由題意可得△=a2-4(a2-1)>0,且兩根之積 a2-1<0,由此求得a的范圍.

解答 解:由題意可得△=a2-4(a2-1)>0,且兩根之積a2-1<0,
求得-1<a<1,
故選:C.

點(diǎn)評(píng) 本題主要考查一元二次方程根的分布與系數(shù)的關(guān)系,二次函數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知向量$\vec a,\vec b$滿足|$\vec a$|=2,|$\vec b$=3,|2$\vec a$+$\vec b$|=$\sqrt{37}$,則向量$\vec a$與$\vec b$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在“南安一中校園歌手大賽”比賽現(xiàn)場(chǎng)上七位評(píng)委為某選手打出的分?jǐn)?shù)的莖葉統(tǒng)計(jì)圖如圖,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的平均數(shù)和方差分別為( 。
A.85和6.8B.85和1.6C.86和6.8D.86和1.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)集合M={a2-a,0}.若a∈M,則實(shí)數(shù)a的值為(  )
A.0B.2C.2或0D.2或-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.化簡(jiǎn):$\frac{1-cos2x}{2}$+$\frac{\sqrt{3}}{2}$sin2x+1+cos2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.由曲線y=x2和直線y=2x所圍成的平面圖形的面積等于$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.29•310+14被25除的余數(shù)是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.有紅、黃、藍(lán)、白4種顏色的小球,每種小球數(shù)量不限且它們除顏色不同外,其余完全相同,將小球放入如圖所示編號(hào)為1,2,3,4,5的盒子中,每個(gè)盒子只放一只小球.
(1)放置小球滿足:“對(duì)任意的正整數(shù)j(1≤j≤5),至少存在另一個(gè)正整數(shù)k(1≤k≤5,且j≠k)使得j號(hào)盒子與k號(hào)盒子中所放小球的顏色相同”的概率;
(2)記X為5個(gè)盒子中顏色相同小球個(gè)數(shù)的最大值,求X的概率分布和數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)y=xlnx在區(qū)間( 。
A.(0,+∞)上單調(diào)遞減B.$(\frac{1}{e},+∞)$上單調(diào)遞減C.$(0,\frac{1}{e})$上單調(diào)遞減D.(0,+∞)上單調(diào)遞增

查看答案和解析>>

同步練習(xí)冊(cè)答案