10.設(shè)A,B是兩個(gè)非空集合,定義A*B={ab|a∈A,b∈B},若A={0,1,2},B={1,2,3},則A*B中元素的個(gè)數(shù)為( 。
A.6B.7C.8D.9

分析 根據(jù)A*B={ab|a∈A,b∈B},A={0,1,2},B={1,2,3},求出ab=0,1,2,3,4,6,即可求出A*B中元素的個(gè)數(shù).

解答 解:因?yàn)锳*B={ab|a∈A,b∈B},A={0,1,2},B={1,2,3},
所以ab=0,1,2,3,4,6,
所以A*B中元素的個(gè)數(shù)為6.
故選:A.

點(diǎn)評(píng) 此題主要考查了元素與集合關(guān)系的判斷,以及學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.若f(x+1)=2x2+1,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.定義在R上的奇函數(shù)y=f(x)在(0,+∞)上遞增,且f($\frac{1}{2}$)=0,則滿足f(x)>0的x的集合為(-$\frac{1}{2},0$)∪($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知|$\overrightarrow{a}$|=2,$\overrightarrow$=(1,$\sqrt{3}$),θ=120°,求$\overrightarrow{a}$•$\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.解方程組$\left\{\begin{array}{l}{{x}^{2}-{y}^{2}=5(x+y)}\\{{x}^{2}+xy+{y}^{2}=43}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知集合M={x|x=$\frac{k}{2}$+$\frac{1}{4}$,k∈Z},N={x|x=$\frac{k}{4}$+$\frac{1}{2}$,k∈Z},若x0∈M,則x0與N的關(guān)系是(  )
A.x0∈NB.x0∉NC.x0∈N或x0∉ND.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在數(shù)列{an}中,a1=0,an+1($\frac{5}{2}$-an)=1,令bn=$\frac{{2a}_{n}-1}{{a}_{n}-2}$,且T=b1+2b2+3b3+…+2014b2014,求證:T<$\frac{8}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.因式分解
(1)12m4-7m2n2+n4;
(2)2x2+ax+a-2;
(3)3ax-3ay+xy-y2;
(4)4a2-20ab+25b2-36;
(5)x2(x+1)-y(xy+x);
(6)x3-4xy2-2x2y+8y3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知⊙C的圓心坐標(biāo)是(-1,3),且圓C與直線x+y-3=0相交于P、Q兩點(diǎn),又OP⊥OQ,O是坐標(biāo)原點(diǎn),求圓C的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案