11.當(dāng)x∈[0,2]時(shí),函數(shù)f(x)=ax2+4(a-1)x-3在x=0時(shí)取得最大值,則a的取值范圍是(-∞,$\frac{2}{3}$].

分析 分a>0,a=0,a<0三種情況進(jìn)行討論,然后根據(jù)x的范圍結(jié)合函數(shù)的單調(diào)性進(jìn)行求解.

解答 解:(1)當(dāng)a>0時(shí),對(duì)稱軸為x=$\frac{2-2a}{a}$,
要使x=0時(shí)取得最大值,則$\frac{2-2a}{a}$≥1或$\frac{2-2a}{a}$≥2,
解得0<a≤$\frac{2}{3}$或0<a≤$\frac{1}{2}$;
(2)當(dāng)a=0時(shí),f(x)=-4x-3,x=0時(shí)取得最大值,成立;
(3)當(dāng)a<0時(shí),對(duì)稱軸為x=$\frac{2-2a}{a}$<0,區(qū)間[0,2]為減區(qū)間,
則x=0時(shí)取得最大值.
綜上所述a的取值范圍為(-∞,$\frac{2}{3}$].
故答案為:(-∞,$\frac{2}{3}$].

點(diǎn)評(píng) 本題主要考查求二次函數(shù)在閉區(qū)間上的最值,二次函數(shù)的性質(zhì)的應(yīng)用,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知數(shù)列{an}的通項(xiàng)為an=2n(n∈N*),把數(shù)列{an}的各項(xiàng)排列成如圖所示的三角形數(shù)陣:

記M(s,t)表示該數(shù)陣中第s行的第t個(gè)數(shù),則M(10,12)對(duì)應(yīng)的數(shù)是293

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.計(jì)算:
(1)計(jì)算27${\;}^{\frac{2}{3}}$-2${\;}^{lo{g}_{2}3}$×log2$\frac{1}{8}$+log23×log34;
(2)已知0<x<1,x+x-1=3,求x${\;}^{\frac{1}{2}}$-x${\;}^{-\frac{1}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知傾斜角為α的直線l與直線x+2y-3=0垂直,則cos($\frac{2015π}{2}$-2α)的值為( 。
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.2D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,若a=7,b=8,cosC=$\frac{13}{14}$,求最大角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知拋物線y2=4x,作斜率為1的直線l交拋物線于A,B兩點(diǎn),交x軸于點(diǎn)M,弦AB的中點(diǎn)為P
(1)若M(2,0),求以線段AB為直徑的圓的方程;
(2)設(shè)M(m,0),若點(diǎn)P滿足$\frac{1}{{|{AM}|}}+\frac{1}{{|{BM}|}}=\frac{1}{{|{PM}|}}$,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x|x+m|-4,m∈R
(1)若g(x)=f(x)+4為奇函數(shù),求實(shí)數(shù)m的值;
(2)當(dāng)m=-3時(shí),求函數(shù)f(x)在x∈[2,4]上的值域;
(3)若f(x)<0對(duì)x∈(0,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)y=f(x)的定義域是(-1,1),則函數(shù)f(2x-1)的定義域?yàn)椋ā 。?table class="qanwser">A.(0,1)B.(-1,1)C.(-3,1)D.(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知冪函數(shù)f(x)=xα的圖象過點(diǎn)(8,4),則α=$\frac{2}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案