6.在△ABC中,若a=7,b=8,cosC=$\frac{13}{14}$,求最大角的余弦值.

分析 先利用余弦定理求得邊c的長度,進(jìn)而根據(jù)大角對大邊的原則推斷出B為最大角,最后利用余弦定理求得cosB的值.

解答 解:c=$\sqrt{49+64-2×7×8×\frac{13}{14}}$=3,
∴b邊最大,
∴B為最大角,
cosB=$\frac{49+9-64}{2×7×3}$=-$\frac{1}{7}$.

點(diǎn)評 本題主要考查了余弦定理的應(yīng)用,解題的關(guān)鍵是判斷出三角形中的最大角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)y=tan(2x-$\frac{π}{4}$),($\frac{π}{4}$≤x≤$\frac{π}{2}$,x≠$\frac{3π}{8}$)的值域?yàn)椋?∞,-1]∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.直三棱柱ABC-A1B1C1的高為5,其中一個(gè)側(cè)面的面積為10,另兩個(gè)側(cè)面面積之和為20.
(1)求該三棱柱的體積的最大值;
(2)當(dāng)該三棱柱的體積取到最大值時(shí),求三棱柱的表面積;
(3)當(dāng)該三棱柱的體積取到最大值時(shí),設(shè)O,O1分別為△ABC,△A1B1C1的重心,S在OO1上,點(diǎn)P為三棱錐S-ABC側(cè)棱SA上的動點(diǎn),若SA=4,求△PBC的周長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)g(x)=3x,h(x)=9x
(1)解方程:h(x)-8g(x)-h(1)=0;
(2)令$p(x)=\frac{g(x)}{{g(x)+\sqrt{3}}}$,求$p(\frac{1}{2014})+p(\frac{2}{2014})+…+p(\frac{2012}{2014})+p(\frac{2013}{2014})$的值;
(3)若$f(x)=\frac{g(x+1)+a}{g(x)+b}$是實(shí)數(shù)集R上的奇函數(shù),且f(h(x)-1)+f(2-k•g(x))>0對任意實(shí)數(shù)x恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知x,y滿足$\left\{\begin{array}{l}{x≥1}\\{x+y-4≤0}\\{x-y≤0}\end{array}\right.$,記z=2x-y的最大值為m,則函數(shù)y=ax-1+m(a>0且a≠1)的圖象所過定點(diǎn)坐標(biāo)為(1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.當(dāng)x∈[0,2]時(shí),函數(shù)f(x)=ax2+4(a-1)x-3在x=0時(shí)取得最大值,則a的取值范圍是(-∞,$\frac{2}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若奇函數(shù)f(x)與偶函數(shù)g(x)滿足f(x)+g(x)=2x,則函數(shù)g(x)的最小值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知集合A={x|-2≤x≤17},B={x|2m+3≤x≤3m-1},若A∪B⊆A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在△ABC中,$\overrightarrow{BA}$=(cos16°,sin16°),$\overrightarrow{BC}$=(2sin29°,2cos29°),則△ABC面積為(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{2}}{4}$

查看答案和解析>>

同步練習(xí)冊答案