【題目】平面直角坐標(biāo)系中,矩形,、、,將矩形折疊,使O點(diǎn)落在線段上,設(shè)折痕所在直線的斜率為k,則k的取值范圍是( 

A.B.

C.D.

【答案】D

【解析】

分析題意,畫出圖形,要想使折疊后O點(diǎn)落在線段上,可取上任意一點(diǎn),作線段的垂直平分線,以為折痕可使重合,由圖可知,直線的斜率大于等于的斜率,根據(jù)點(diǎn)O和點(diǎn)的坐標(biāo)可求出直線的斜率,進(jìn)而得到直線的斜率的取值范圍;再根據(jù)直線和直線垂直,結(jié)合兩直線垂直,斜率之積為,即可得到直線的斜率的取值范圍,注意分析折疊后重合情況.

解:如圖,

要想使折疊后O點(diǎn)落在線段上,可取上任意一點(diǎn)

作線段的垂直平分線,以為折痕可使重合,

因?yàn)?/span>,

所以,且.

又當(dāng)折疊后重合時(shí),,

所以

的取值范圍是,

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若變量滿足約束條件,且最小值為7,則的值為( )

A. 1B. 2C. -2D. -1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年初,某市為了實(shí)現(xiàn)教育資源公平,辦人民滿意的教育,準(zhǔn)備在今年8月份的小升初錄取中在某重點(diǎn)中學(xué)實(shí)行分?jǐn)?shù)和搖號(hào)相結(jié)合的錄取辦法.該市教育管理部門為了了解市民對該招生辦法的贊同情況,隨機(jī)采訪了440名市民,將他們的意見和是否近三年家里有小升初學(xué)生的情況進(jìn)行了統(tǒng)計(jì),得到如下的2×2列聯(lián)表.

贊同錄取辦法人數(shù)

不贊同錄取辦法人數(shù)

合計(jì)

近三年家里沒有小升初學(xué)生

180

40

220

近三年家里有小升初學(xué)生

140

80

220

合計(jì)

320

120

440

1)根據(jù)上面的列聯(lián)表判斷,能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為是否贊同小升初錄取辦法與近三年是否家里有小升初學(xué)生有關(guān);

2)從上述調(diào)查的不贊同小升初錄取辦法人員中根據(jù)近三年家里是否有小升初學(xué)生按分層抽樣抽出6人,再從這6人中隨機(jī)抽出3人進(jìn)行電話回訪,求3人中恰有1人近三年家里沒有小升初學(xué)生的概率.

附:,其中.

P()

0.10

0.05

0.025

0.10

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)三棱錐是正三棱錐的充要條件是(

A.底面是正三角形,三個(gè)側(cè)面是全等的等腰三角形

B.各個(gè)面都是正三角形

C.三個(gè)側(cè)面是全等的等腰三角形

D.頂點(diǎn)在底面上的射影為重心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古達(dá)數(shù)學(xué)名著《九章算術(shù)-商功》中闡述:“斜解立方,得兩塹堵,斜解塹堵,其一為陽馬,一為鱉觸,陽馬居二,鱉屬居一.不易之率也。合兩鱉觸三而一,驗(yàn)之以基,其形露矣,”若稱為“陽馬”的某幾何體的三視圖如圖所示 圖中網(wǎng)格紙上小正方形的邊長為. 則對該兒何體描述:

①四個(gè)側(cè)面首飾直角三角形

②最長的側(cè)棱長為

③四個(gè)側(cè)面中有三個(gè)側(cè)面是全等的直角三角形

④外接球的表面積為

其中正確的個(gè)數(shù)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于復(fù)數(shù)為虛數(shù)單位),定義,給出下列命題:①對任何復(fù)數(shù)z,都有,等號(hào)成立的充要條件是;②:③若,則:④對任何復(fù)數(shù),不等式恒成立,其中真命題的個(gè)數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是邊長為2的菱形,且,平面,,,點(diǎn)是線段上任意一點(diǎn).

(1)證明:平面平面;

(2)若的最大值是,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從金山區(qū)走出去的陳馳博士,在《自然—可持續(xù)性》雜志上發(fā)表的論文中指出:地球正在變綠,中國通過植樹造林和提高農(nóng)業(yè)效率,在其中起到了主導(dǎo)地位.已知某種樹木的高度(單位:米)與生長年限(單位:年,tN*)滿足如下的邏輯斯蒂函數(shù):,其中e為自然對數(shù)的底數(shù). 設(shè)該樹栽下的時(shí)刻為0.

(1)需要經(jīng)過多少年,該樹的高度才能超過5米?(精確到個(gè)位)

(2)在第幾年內(nèi),該樹長高最快?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方體ABCDA1B1C1D1中,ADAA11,ABm,點(diǎn)M是棱CD的中點(diǎn).

1)求異面直線B1CAC1所成的角的大;

2)是否存在實(shí)數(shù)m,使得直線AC1與平面BMD1垂直?說明理由;

3)設(shè)P是線段AC1上的一點(diǎn)(不含端點(diǎn)),滿足λ,求λ的值,使得三棱錐B1CD1C1與三棱錐B1CD1P的體積相等.

查看答案和解析>>

同步練習(xí)冊答案