【題目】平面直角坐標(biāo)系中,矩形,、、,將矩形折疊,使O點(diǎn)落在線段上,設(shè)折痕所在直線的斜率為k,則k的取值范圍是( )
A.B.
C.D.
【答案】D
【解析】
分析題意,畫出圖形,要想使折疊后O點(diǎn)落在線段上,可取上任意一點(diǎn),作線段的垂直平分線,以為折痕可使與重合,由圖可知,直線的斜率大于等于的斜率,根據(jù)點(diǎn)O和點(diǎn)的坐標(biāo)可求出直線的斜率,進(jìn)而得到直線的斜率的取值范圍;再根據(jù)直線和直線垂直,結(jié)合兩直線垂直,斜率之積為,即可得到直線的斜率的取值范圍,注意分析折疊后與重合情況.
解:如圖,
要想使折疊后O點(diǎn)落在線段上,可取上任意一點(diǎn),
作線段的垂直平分線,以為折痕可使與重合,
因?yàn)?/span>,
所以,且.
又當(dāng)折疊后與重合時(shí),,
所以
的取值范圍是,
故選:D
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年初,某市為了實(shí)現(xiàn)教育資源公平,辦人民滿意的教育,準(zhǔn)備在今年8月份的小升初錄取中在某重點(diǎn)中學(xué)實(shí)行分?jǐn)?shù)和搖號(hào)相結(jié)合的錄取辦法.該市教育管理部門為了了解市民對該招生辦法的贊同情況,隨機(jī)采訪了440名市民,將他們的意見和是否近三年家里有小升初學(xué)生的情況進(jìn)行了統(tǒng)計(jì),得到如下的2×2列聯(lián)表.
贊同錄取辦法人數(shù) | 不贊同錄取辦法人數(shù) | 合計(jì) | |
近三年家里沒有小升初學(xué)生 | 180 | 40 | 220 |
近三年家里有小升初學(xué)生 | 140 | 80 | 220 |
合計(jì) | 320 | 120 | 440 |
(1)根據(jù)上面的列聯(lián)表判斷,能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為是否贊同小升初錄取辦法與近三年是否家里有小升初學(xué)生有關(guān);
(2)從上述調(diào)查的不贊同小升初錄取辦法人員中根據(jù)近三年家里是否有小升初學(xué)生按分層抽樣抽出6人,再從這6人中隨機(jī)抽出3人進(jìn)行電話回訪,求3人中恰有1人近三年家里沒有小升初學(xué)生的概率.
附:,其中.
P() | 0.10 | 0.05 | 0.025 | 0.10 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)三棱錐是正三棱錐的充要條件是( )
A.底面是正三角形,三個(gè)側(cè)面是全等的等腰三角形
B.各個(gè)面都是正三角形
C.三個(gè)側(cè)面是全等的等腰三角形
D.頂點(diǎn)在底面上的射影為重心
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古達(dá)數(shù)學(xué)名著《九章算術(shù)-商功》中闡述:“斜解立方,得兩塹堵,斜解塹堵,其一為陽馬,一為鱉觸,陽馬居二,鱉屬居一.不易之率也。合兩鱉觸三而一,驗(yàn)之以基,其形露矣,”若稱為“陽馬”的某幾何體的三視圖如圖所示 圖中網(wǎng)格紙上小正方形的邊長為. 則對該兒何體描述:
①四個(gè)側(cè)面首飾直角三角形
②最長的側(cè)棱長為
③四個(gè)側(cè)面中有三個(gè)側(cè)面是全等的直角三角形
④外接球的表面積為
其中正確的個(gè)數(shù)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于復(fù)數(shù)(為虛數(shù)單位),定義,給出下列命題:①對任何復(fù)數(shù)z,都有,等號(hào)成立的充要條件是;②:③若,則:④對任何復(fù)數(shù),不等式恒成立,其中真命題的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是邊長為2的菱形,且,平面,,,點(diǎn)是線段上任意一點(diǎn).
(1)證明:平面平面;
(2)若的最大值是,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從金山區(qū)走出去的陳馳博士,在《自然—可持續(xù)性》雜志上發(fā)表的論文中指出:地球正在變綠,中國通過植樹造林和提高農(nóng)業(yè)效率,在其中起到了主導(dǎo)地位.已知某種樹木的高度(單位:米)與生長年限(單位:年,tN*)滿足如下的邏輯斯蒂函數(shù):,其中e為自然對數(shù)的底數(shù). 設(shè)該樹栽下的時(shí)刻為0.
(1)需要經(jīng)過多少年,該樹的高度才能超過5米?(精確到個(gè)位)
(2)在第幾年內(nèi),該樹長高最快?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體ABCD﹣A1B1C1D1中,AD=AA1=1,AB=m,點(diǎn)M是棱CD的中點(diǎn).
(1)求異面直線B1C與AC1所成的角的大;
(2)是否存在實(shí)數(shù)m,使得直線AC1與平面BMD1垂直?說明理由;
(3)設(shè)P是線段AC1上的一點(diǎn)(不含端點(diǎn)),滿足λ,求λ的值,使得三棱錐B1﹣CD1C1與三棱錐B1﹣CD1P的體積相等.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com