8.記函數(shù)f(x)=$\frac{2x}{x-2}$在區(qū)間[3,4]上的最大值和最小值分別為M、m,則$\frac{{m}^{2}}{M}$的值為(  )
A.$\frac{2}{3}$B.$\frac{3}{8}$C.$\frac{3}{2}$D.$\frac{8}{3}$

分析 利用f(x)在[3,4]上為減函數(shù),即可得出結(jié)論.

解答 解:f(x)=$\frac{2x}{x-2}$=2(1+$\frac{2}{x-2}$)=2+$\frac{4}{x-2}$,
∴f(x)在[3,4]上為減函數(shù),
∴M=f(3)=2+$\frac{4}{3-2}$=6,
m=f(4)=2+$\frac{4}{4-2}$=4,
∴$\frac{{m}^{2}}{M}$=$\frac{16}{6}$=$\frac{8}{3}$,
故選:D

點評 本題考查函數(shù)的最值及其幾何意義,正確運用函數(shù)的單調(diào)性是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=ax2+(b-8)x-a-ab,已知不等式f(x)<0的解集是(-∞,-3)∪(2,+∞),
(1)求a和b的值;
(2)已知命題p:?x∈R,ax2+bx+c≤0,命題q:?x∈R,x2+2$\sqrt{3}$x-c=0.如果p∨(¬q)是真命題,p∧(¬q)是假命題,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)0≤α≤π,不等式8x2-(8sinα)x+cos2α≥0對任意x∈R恒成立,求α的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.定義運算為:a*b=$\left\{\begin{array}{l}{a,(a≤b)}\\{b,(a>b)}\end{array}\right.$,如1*2=1,則函數(shù)f(x)=|2x*2-x-1|的值域為(  )
A.[0,1]B.[0,1)C.[0,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)的定義域為[-1,2],則函數(shù)g(x)=f(2x-$\frac{3}{2}$)的定義域為( 。
A.[$\frac{1}{4}$,$\frac{7}{4}$]B.[1,$\frac{7}{4}$]C.[-1,$\frac{1}{4}$]D.[-1,$\frac{7}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.使函數(shù)y=xα的定義域為R且為奇函數(shù)的α的值為( 。
A.-1B.0C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.200輛汽車經(jīng)過某一雷達地區(qū),時速頻率分布直方圖如圖所示,則時速超過60km/h的汽車數(shù)量為( 。
A.65輛B.76輛C.88 輛D.95輛

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知a∈R,“函數(shù)y=logax在(0,+∞)上為減函數(shù)”是“函數(shù)y=3x+a-1有零點”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)集合A={x|x2<9},B={x|(x-2)(x+4)<0}.
(1)求集合A∩B;
(2)若不等式2x2+ax+b<0的解集為A∪B,求a、b的值.

查看答案和解析>>

同步練習(xí)冊答案