【題目】已知p:x2-6x+5≤0,q:x2-2x+1-m2≤0(m>0).
(1)若m=2,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若p是q的充分不必要條件,求實(shí)數(shù)m的取值范圍.
【答案】(1);(2)
【解析】
(1)解不等求得p,根據(jù)m的值求得q;根據(jù)p∧ q為真可知p、q同時(shí)為真,可求得x的取值范圍。
(2)先求得q。根據(jù)p是q的充分不必要條件,得到不等式組,解不等式組即可得到m的取值范圍。
(1)由x2-6x+5≤0,得1≤x≤5,∴p:1≤x≤5.
當(dāng)m=2時(shí),q:-1≤x≤3.
若p∧q為真,p,q同時(shí)為真命題,
則即1≤x≤3.
∴實(shí)數(shù)x的取值范圍為[1,3].
(2)由x2-2x+1-m2≤0,得q:1-m≤x≤1+m.
∵p是q的充分不必要條件,
∴解得m≥4.
∴實(shí)數(shù)m的取值范圍為[4,+∞).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,位于A處的信息中心獲悉:在其正東方向相距40海里的B處有一艘漁船遇險(xiǎn),在原地等待營(yíng)救.信息中心立即把消息告知在其南偏西30°,相距20海里的C處的乙船,現(xiàn)乙船朝北偏東的方向即沿直線CB前往B處救援,則等于 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四邊形ABCD為梯形,AD∥BC,且AD=2BC,過A1、C、D三點(diǎn)的平面記為α,BB1與α的交點(diǎn)為Q.
(1)證明:Q為BB1的中點(diǎn);
(2)若AA1=4,CD=2,梯形ABCD的面積為6,∠ADC=60°,求平面α與底面ABCD所成銳二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,A,B分別是橢圓C:=1(a>b>0)的左右頂點(diǎn),F為其右焦點(diǎn),2是|AF|與|FB|的等差中項(xiàng),是|AF|與|FB|的等比中項(xiàng).點(diǎn)P是橢圓C上異于A,B的任一動(dòng)點(diǎn),過點(diǎn)A作直線l⊥x軸.以線段AF為直徑的圓交直線AP于點(diǎn)A,M,連接FM交直線l于點(diǎn)Q.
(1)求橢圓C的方程;
(2)試問在x軸上是否存在一個(gè)定點(diǎn)N,使得直線PQ必過該定點(diǎn)N?若存在,求出點(diǎn)N的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人事部門對(duì)參加某次專業(yè)技術(shù)考試的100人的成績(jī)進(jìn)行了統(tǒng)計(jì),繪制的頻率分布直方圖如圖所示.規(guī)定80分以上者晉級(jí)成功,否則晉級(jí)失敗(滿分為100分).
(1)求圖中的值;
(2)估計(jì)該次考試的平均分 (同一組中的數(shù)據(jù)用該組的區(qū)間中點(diǎn)值代表);
(3)根據(jù)已知條件完成下面2×2列聯(lián)表,并判斷能否有85%的把握認(rèn)為“晉級(jí)成功”與性別有關(guān).
晉級(jí)成功 | 晉級(jí)失敗 | 合計(jì) | |
男 | 16 | ||
女 | 50 | ||
合計(jì) |
參考公式:,其中
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若,使 成立,則稱為函數(shù)的一個(gè)“生成點(diǎn)”,則函數(shù)的“生成點(diǎn)”共有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱臺(tái)ABCD﹣A1B1C1D1中,平面BCC1B1⊥平面ABCD,四邊形ABCD為平行四邊形,四邊形BCC1B1為等腰梯形,BC=4,B1C1=C1C=2,AB=5,AC⊥BC.
(1)求證:BC1⊥平面ACC1;
(2)求直線BC1與平面ADD1A1所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.已知a>b,a=5,c=6,sinB= .
(Ⅰ)求b和sinA的值;
(Ⅱ)求sin(2A+ )的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=x2+ax+b在區(qū)間[0,1]上的最大值是M,最小值是m,則M﹣m( )
A.與a有關(guān),且與b有關(guān)
B.與a有關(guān),但與b無關(guān)
C.與a無關(guān),且與b無關(guān)
D.與a無關(guān),但與b有關(guān)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com