【題目】若函數(shù)f(x)=x2+ax+b在區(qū)間[0,1]上的最大值是M,最小值是m,則M﹣m( )
A.與a有關(guān),且與b有關(guān)
B.與a有關(guān),但與b無關(guān)
C.與a無關(guān),且與b無關(guān)
D.與a無關(guān),但與b有關(guān)
【答案】B
【解析】解:函數(shù)f(x)=x2+ax+b的圖象是開口朝上且以直線x=﹣ 為對稱軸的拋物線,
①當(dāng)﹣ >1或﹣ <0,即a<﹣2,或a>0時,
函數(shù)f(x)在區(qū)間[0,1]上單調(diào),
此時M﹣m=|f(1)﹣f(0)|=|a|,
故M﹣m的值與a有關(guān),與b無關(guān)
②當(dāng) ≤﹣ ≤1,即﹣2≤a≤﹣1時,
函數(shù)f(x)在區(qū)間[0,﹣ ]上遞減,在[﹣ ,1]上遞增,
且f(0)>f(1),
此時M﹣m=f(0)﹣f(﹣ )= ,
故M﹣m的值與a有關(guān),與b無關(guān)
③當(dāng)0≤﹣ < ,即﹣1<a≤0時,
函數(shù)f(x)在區(qū)間[0,﹣ ]上遞減,在[﹣ ,1]上遞增,
且f(0)<f(1),
此時M﹣m=f(0)﹣f(﹣ )=a﹣ ,
故M﹣m的值與a有關(guān),與b無關(guān)
綜上可得:M﹣m的值與a有關(guān),與b無關(guān)
故選:B
【考點精析】根據(jù)題目的已知條件,利用二次函數(shù)的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握當(dāng)時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當(dāng)時,拋物線開口向下,函數(shù)在上遞增,在上遞減.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p:x2-6x+5≤0,q:x2-2x+1-m2≤0(m>0).
(1)若m=2,且p∧q為真,求實數(shù)x的取值范圍;
(2)若p是q的充分不必要條件,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,雙曲線 =1(a>0,b>0)的右支與焦點為F的拋物線x2=2py(p>0)交于A,B兩點,若|AF|+|BF|=4|OF|,則該雙曲線的漸近線方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中點.
求證:CD⊥平面PAE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體ABCD-A1B1C1D1中,E,F分別是BB1,CD的中點.
(1)證明:平面AED⊥平面A1FD1;
(2)在AE上求一點M,使得A1M⊥平面DAE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,F,H分別是正方體ABCD-A1B1C1D1的棱CC1,AA1的中點,棱長為,
(1)求證:平面BDF∥平面B1D1H.
(2)求正方體外接球的表面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是邊長2的正方形,E,F(xiàn)分別為線段DD1,BD的中點.
(1)求證:EF∥平面ABC1D1;
(2)AA1=2,求異面直線EF與BC所成的角的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com