【題目】已知函數(shù)為常數(shù),且.

1)證明函數(shù)的圖象關(guān)于直線對稱;

2)當(dāng)時,討論方程解的個數(shù);

3)若滿足,但,則稱為函數(shù)的二階周期點(diǎn),則是否有兩個二階周期點(diǎn),說明理由.

【答案】1)略;(2)當(dāng)時,方程有2個解;當(dāng)時,方程有3個解;當(dāng)時,方程有4個解;(3)只有是二階周期點(diǎn).

【解析】

1)根據(jù)函數(shù)對稱的性質(zhì)即可證明函數(shù)的圖像關(guān)于直線對稱。

2)當(dāng)時,求出的表達(dá)式,利用數(shù)形結(jié)合得到結(jié)論。

3)根據(jù)階周期點(diǎn)的定義,分別求滿足條件的,即可得到結(jié)論。

1)證明:設(shè)點(diǎn)上任意一點(diǎn),則

所以,函數(shù)的圖像關(guān)于直線對稱。

2)當(dāng)

,

所以,當(dāng)時,方程有個解;時,方程有個解;當(dāng)時,方程有個解;當(dāng)時,方程有個解。

綜上:當(dāng)時,方程有個解;當(dāng)時,方程有個解;當(dāng)時,方程有個解。

3)因?yàn)?/span>

所以當(dāng),

,即,

,即 ,

當(dāng),同理可得:

時,;

時,.

所以

從而由 ,

,

,

,

所以只有是二階周期點(diǎn)。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來,移動支付已成為主要支付方式之一.為了解某校學(xué)生上個月A,B兩種移動支付方式的使用情況,從全校學(xué)生中隨機(jī)抽取了100人,發(fā)現(xiàn)樣本中AB兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學(xué)生的支付金額分布情況如下:

交付金額(元)

支付方式

0,1000]

1000,2000]

大于2000

僅使用A

18

9

3

僅使用B

10

14

1

(Ⅰ)從全校學(xué)生中隨機(jī)抽取1人,估計(jì)該學(xué)生上個月A,B兩種支付方式都使用的概率;

(Ⅱ)從樣本僅使用A和僅使用B的學(xué)生中各隨機(jī)抽取1人,以X表示這2人中上個月支付金額大于1000元的人數(shù),求X的分布列和數(shù)學(xué)期望;

(Ⅲ)已知上個月樣本學(xué)生的支付方式在本月沒有變化.現(xiàn)從樣本僅使用A的學(xué)生中,隨機(jī)抽查3人,發(fā)現(xiàn)他們本月的支付金額都大于2000元.根據(jù)抽查結(jié)果,能否認(rèn)為樣本僅使用A的學(xué)生中本月支付金額大于2000元的人數(shù)有變化?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一個長方體形狀的敞口玻璃容器,底面是邊長為20cm的正方形,高為30cm,內(nèi)有20cm深的溶液.現(xiàn)將此容器傾斜一定角度(圖),且傾斜時底面的一條棱始終在桌面上(圖均為容器的縱截面).

1)要使傾斜后容器內(nèi)的溶液不會溢出,角的最大值是多少?

2)現(xiàn)需要倒出不少于的溶液,當(dāng)時,能實(shí)現(xiàn)要求嗎?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系,以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的參數(shù)方程為為參數(shù)),點(diǎn)時曲線上兩點(diǎn),點(diǎn)的極坐標(biāo)分別為,.

1)寫出曲線的普通方程和極坐標(biāo)方程;

2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,平面,點(diǎn)的中點(diǎn),,,.

1)求證:平面平面;

2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓的普通方程為.在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為

1)寫出圓的參數(shù)方程和直線的直角坐標(biāo)方程;

2)設(shè)點(diǎn)上,點(diǎn)Q在上,求的最小值及此時點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,平面PCD,,,,EAD的中點(diǎn),ACBE相交于點(diǎn)O.

1)證明:平面ABCD.

2)求直線BC與平面PBD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的首項(xiàng),對任意的,都有,數(shù)列是公比不為的等比數(shù)列.

1)求實(shí)數(shù)的值;

2)設(shè)數(shù)列的前項(xiàng)和為,求所有正整數(shù)的值,使得恰好為數(shù)列中的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:直線關(guān)于圓的圓心距單位圓心到直線的距離與圓的半徑之比.

1)設(shè)圓,求過點(diǎn)的直線關(guān)于圓的圓心距單位的直線方程.

2)若圓軸相切于點(diǎn),且直線關(guān)于圓的圓心距單位,求此圓的方程.

3)是否存在點(diǎn),使過點(diǎn)的任意兩條互相垂直的直線分別關(guān)于相應(yīng)兩圓的圓心距單位始終相等?若存在,求出相應(yīng)的點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案