【題目】一種作圖工具如圖1所示.是滑槽的中點,短桿可繞轉(zhuǎn)動,長桿通過處鉸鏈與連接,上的栓子可沿滑槽AB滑動,且,.當(dāng)栓子在滑槽AB內(nèi)作往復(fù)運動時,帶動繞轉(zhuǎn)動一周(不動時,也不動),處的筆尖畫出的曲線記為.以為原點,所在的直線為軸建立如圖2所示的平面直角坐標(biāo)系.
(Ⅰ)求曲線C的方程;
(Ⅱ)設(shè)動直線與兩定直線和分別交于兩點.若直線總與曲線有且只有一個公共點,試探究:的面積是否存在最小值?若存在,求出該最小值;若不存在,說明理由.
【答案】(Ⅰ);(Ⅱ)存在最小值8.
【解析】
(Ⅰ)設(shè)點,,依題意,
,且,
所以,且
即且
由于當(dāng)點不動時,點也不動,所以不恒等于0,
于是,故,代入,可得,
即所求的曲線的方程為
(Ⅱ)(1)當(dāng)直線的斜率不存在時,直線為或,都有.
(2)當(dāng)直線的斜率存在時,設(shè)直線,
由消去,可得.
因為直線總與橢圓有且只有一個公共點,
所以,即. ①
又由可得;同理可得.
由原點到直線的距離為和,可得
. ②
將①代入②得,.
當(dāng)時,;
當(dāng)時,.
因,則,,所以,
當(dāng)且僅當(dāng)時取等號.
所以當(dāng)時,的最小值為8.
綜合(1)(2)可知,當(dāng)直線與橢圓在四個頂點處相切時,的面積取得最小值8.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),的在數(shù)集上都有定義,對于任意的,當(dāng)時,或成立,則稱是數(shù)集上的限制函數(shù).
(1)求在上的限制函數(shù)的解析式;
(2)證明:如果在區(qū)間上恒為正值,則在上是增函數(shù);[注:如果在區(qū)間上恒為負值,則在區(qū)間上是減函數(shù),此結(jié)論無需證明,可以直接應(yīng)用]
(3)利用(2)的結(jié)論,求函數(shù)在上的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)向量,,其中,則下列判斷錯誤的是( )
A.向量與軸正方向的夾角為定值(與、之值無關(guān))
B.的最大值為
C.與夾角的最大值為
D.的最大值為l
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對年利率為的連續(xù)復(fù)利,要在年后達到本利和,則現(xiàn)在投資值為,是自然對數(shù)的底數(shù).如果項目的投資年利率為的連續(xù)復(fù)利.
(1)現(xiàn)在投資5萬元,寫出滿年的本利和,并求滿10年的本利和;(精確到0.1萬元)
(2)一個家庭為剛出生的孩子設(shè)立創(chuàng)業(yè)基金,若每年初一次性給項目投資2萬元,那么,至少滿多少年基金共有本利和超過一百萬元?(精確到1年)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左,右焦點分別為,,且經(jīng)過點.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點作一條斜率不為的直線與橢圓相交于兩點,記點關(guān)于軸對稱的點為.證明:直線經(jīng)過軸上一定點,并求出定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:,,分別是橢圓短軸的上下兩個端點,是橢圓的左焦點,P是橢圓上異于點,的點,若的邊長為4的等邊三角形.
寫出橢圓的標(biāo)準(zhǔn)方程;
當(dāng)直線的一個方向向量是時,求以為直徑的圓的標(biāo)準(zhǔn)方程;
設(shè)點R滿足:,,求證:與的面積之比為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已如長方形 中, ,M為的中點,將 沿 折起,使得平面 平面,
(1)求證: ;
(2)若點 是線段 上的中點,求三棱錐與四棱錐的體積的比值 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com