【題目】已知函數(shù)

(Ⅰ)求的極值;

(Ⅱ)當(dāng)時,設(shè),求證:曲線存在兩條斜率為且不重合的切線.

【答案】(Ⅰ)極小值;(Ⅱ)證明見解析.

【解析】分析:(Ⅰ)對a分類討論,利用導(dǎo)數(shù)求函數(shù)的極值. (Ⅱ)先把問題轉(zhuǎn)化為曲線在點,處的切線不重合,再利用反證法證明.

詳解:(Ⅰ) ,

,得

當(dāng)時,符號相同

當(dāng)變化時,的變化情況如下表:

極小

當(dāng)時,符號相反

當(dāng)變化時,的變化情況如下表:

極小

綜上,處取得極小值.

(Ⅱ) ,

注意到,,,

所以,,,使得

因此,曲線在點,處的切線斜率均為.

下面,只需證明曲線在點,處的切線不重合.

曲線在點)處的切線方程為假設(shè)曲線在點)處的切線重合,則

,則,且.

由(Ⅰ)知,當(dāng)時,

所以,在區(qū)間上單調(diào)遞減,于是有矛盾.

因此,曲線在點()處的切線不重合

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】采用系統(tǒng)抽樣方法從1000人中抽取50人做問卷調(diào)查,為此將他們隨機(jī)編號1,, ,1000,適當(dāng)分組后在第一組采用簡單隨機(jī)抽樣的方法抽到的號碼為8,抽到的50人中,編號落入?yún)^(qū)間的人做問卷A,編號落入?yún)^(qū)間的人做問卷B,其余的人做問卷C,則抽到的人中,做問卷C的人數(shù)為( )

A. 12 B. 13 C. 14 D. 15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為踐行“綠水青山就是金山銀山”的發(fā)展理念,某城區(qū)對轄區(qū)內(nèi),三類行業(yè)共200個單位的生態(tài)環(huán)境治理成效進(jìn)行了考核評估,考評分?jǐn)?shù)達(dá)到80分及其以上的單位被稱為“星級”環(huán)保單位,未達(dá)到80分的單位被稱為“非星級”環(huán)保單位.現(xiàn)通過分層抽樣的方法獲得了這三類行業(yè)的20個單位,其考評分?jǐn)?shù)如下:

類行業(yè):85,82,7778,83,87

類行業(yè):76,6780,8579,81;

類行業(yè):8789,76,86,75,84,9082

(Ⅰ)計算該城區(qū)這三類行業(yè)中每類行業(yè)的單位個數(shù);

(Ⅱ)若從抽取的類行業(yè)這6個單位中,再隨機(jī)選取3個單位進(jìn)行某項調(diào)查,求選出的這3個單位中既有“星級”環(huán)保單位,又有“非星級”環(huán)保單位的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一種作圖工具如圖1所示.是滑槽的中點,短桿可繞轉(zhuǎn)動,長桿通過處鉸鏈與連接,上的栓子可沿滑槽AB滑動,且,.當(dāng)栓子在滑槽AB內(nèi)作往復(fù)運(yùn)動時,帶動轉(zhuǎn)動一周(不動時,也不動),處的筆尖畫出的曲線記為.以為原點,所在的直線為軸建立如圖2所示的平面直角坐標(biāo)系.

)求曲線C的方程;

)設(shè)動直線與兩定直線分別交于兩點.若直線總與曲線有且只有一個公共點,試探究:的面積是否存在最小值?若存在,求出該最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面幾種推理是類比推理的( )

A. 兩條直線平行,同旁內(nèi)角互補(bǔ),如果是兩條平行直線的同旁內(nèi)角,則

B. 由平面三角形的性質(zhì),推測空間四邊形的性質(zhì)

C. 某校高二級有20個班,1班有51位團(tuán)員,2班有53位團(tuán)員,3班有52位團(tuán)員,由此可以推測各班都超過50位團(tuán)員.

D. 一切偶數(shù)都能被2整除,是偶數(shù),所以能被2整除.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四色猜想是世界三大數(shù)學(xué)猜想之一,1976年數(shù)學(xué)家阿佩爾與哈肯證明,稱為四色定理.其內(nèi)容是:“任意一張平面地圖只用四種顏色就能使具有共同邊界的國家涂上不同的顏色.”用數(shù)學(xué)語言表示為“將平面任意地細(xì)分為不相重疊的區(qū)域,每一個區(qū)域總可以用,,四個數(shù)字之一標(biāo)記,而不會使相鄰的兩個區(qū)域得到相同的數(shù)字.”如圖,網(wǎng)格紙上小正方形的邊長為,粗實線圍城的各區(qū)域上分別標(biāo)有數(shù)字,,的四色地圖符合四色定理,區(qū)域和區(qū)域標(biāo)記的數(shù)字丟失.若在該四色地圖上隨機(jī)取一點,則恰好取在標(biāo)記為的區(qū)域的概率所有可能值中,最大的是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知px2≤5x-4,qx2-(a+2)x+2a≤0.

(1)p是真命題,求對應(yīng)x的取值范圍;

(2)pq的必要不充分條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列是公差為正數(shù)的等差數(shù)列,數(shù)列為等比數(shù)列,且,,.

(1)求數(shù)列、的通項公式;

(2)設(shè)數(shù)列是由所有的項,且的項組成的數(shù)列,且原項數(shù)先后順序保持不變,求數(shù)列的前2019項的和;

(3)對任意給定的是否存在使成等差數(shù)列?若存在,用分別表示(只要寫出一組即可);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的質(zhì)量指標(biāo)值.由測量結(jié)果得到如圖所示的頻率分布直方圖,質(zhì)量指標(biāo)值落在區(qū)間[55,65),[65,75),[75,85]內(nèi)的頻率之比為4∶2∶1.

(1)求這些產(chǎn)品質(zhì)量指標(biāo)值落在區(qū)間[75,85]內(nèi)的概率;

(2)若將頻率視為概率,從該企業(yè)生產(chǎn)的這種產(chǎn)品中隨機(jī)抽取3件,記這3件產(chǎn)品中質(zhì)量指標(biāo)值位于區(qū)間[45,75)內(nèi)的產(chǎn)品件數(shù)為X,求X的分布列.

查看答案和解析>>

同步練習(xí)冊答案