下列說法中,正確的有        
①若點(diǎn)是拋物線上一點(diǎn),則該點(diǎn)到拋物線的焦點(diǎn)的距離是
②設(shè)、為雙曲線的兩個焦點(diǎn),為雙曲線上一動點(diǎn),,則的面積為
③設(shè)定圓上有一動點(diǎn),圓內(nèi)一定點(diǎn)的垂直平分線與半徑的交點(diǎn)為點(diǎn),則的軌跡為一橢圓;
④設(shè)拋物線焦點(diǎn)到準(zhǔn)線的距離為,過拋物線焦點(diǎn)的直線交拋物線于A、B兩點(diǎn),則、、成等差數(shù)列.

①④

解析試題分析:根據(jù)題意,由于①若點(diǎn)是拋物線上一點(diǎn),則該點(diǎn)到拋物線的焦點(diǎn)的距離是;根據(jù)定義顯然得到成立。
②設(shè)、為雙曲線的兩個焦點(diǎn),為雙曲線上一動點(diǎn),則的面積為;結(jié)合定義和余弦定理可知面積為,故錯誤。
③設(shè)定圓上有一動點(diǎn),圓內(nèi)一定點(diǎn),的垂直平分線與半徑的交點(diǎn)為點(diǎn),則的軌跡為一橢圓;不一定。錯誤
④設(shè)拋物線焦點(diǎn)到準(zhǔn)線的距離為,過拋物線焦點(diǎn)的直線交拋物線于A、B兩點(diǎn),則、成等差數(shù)列.聯(lián)立方程組,結(jié)合韋達(dá)定理可以證明得到+=,進(jìn)而說明結(jié)論成立,故答案為①④
考點(diǎn):圓錐曲線的性質(zhì)
點(diǎn)評:主要是考查了圓錐曲線的方程以及性質(zhì)的運(yùn)用,屬于中檔題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知是橢圓和雙曲線的公共頂
點(diǎn)。是雙曲線上的動點(diǎn),是橢圓上的動點(diǎn)(、都異于、),且滿足,其中,設(shè)直線、、、的斜率 分別記為, ,則        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

雙曲線的虛軸長是實(shí)軸長的2倍,則m等于             。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知橢圓C1的中心在原點(diǎn)、焦點(diǎn)在x軸上,拋物線C2的頂點(diǎn)在原點(diǎn)、焦點(diǎn)在x軸上。小明從曲線C1,C2上各取若干個點(diǎn)(每條曲線上至少取兩個點(diǎn)),并記錄其坐標(biāo)(x,y)。由于記錄失誤,使得其中恰好有一個點(diǎn)既不在橢圓上C1上,也不在拋物線C2上。小明的記錄如下:

X
 
-2
 
-
 
0
 
2
 
2
 
3
 
Y
 
2
 
0
 

 
-2
 

 
-2
 
據(jù)此,可推斷橢圓C1的方程為           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

直線與雙曲線C:交于兩點(diǎn),是線段的中 點(diǎn),若是原點(diǎn))的斜率的乘積等于,則此雙曲線的離心率為        ___

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

如圖,在平面斜坐標(biāo)系xOy中,,平面上任意一點(diǎn)P關(guān)于斜坐標(biāo)系的斜坐標(biāo)這樣定義:若(其中分別是x軸,y軸正方向的單位向量),則P點(diǎn)的斜坐標(biāo)為(x,y),向量的斜坐標(biāo)為(x,y).給出以下結(jié)論:

①若,P(2,-1),則;
②若,,則;
③若(x,y),,則;
④若,,則;
⑤若,以O(shè)為圓心,1為半徑的圓的斜坐標(biāo)方程為
其中所有正確的結(jié)論的序號是______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知拋物線的準(zhǔn)線經(jīng)過橢圓的左焦點(diǎn),且經(jīng)過拋物線與橢圓兩個交點(diǎn)的弦過拋物線的焦點(diǎn),則橢圓的離心率為_____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

橢圓(為參數(shù))的離心率是        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

長為3的線段的端點(diǎn)分別在軸上移動,動點(diǎn)滿足,則動點(diǎn)的軌跡方程是              

查看答案和解析>>

同步練習(xí)冊答案